N-Acetyltransferase 2 (NAT2) genotyping by PCR and RFLP-based methods provides information on seven single nucleotide polymorphisms (SNPs) without deriving the chromosomal phase (haplotype). So genotyping results must be processed to get all possible NAT2 haplotype (or allele) combinations. Here we describe the procedure for genotyping and present a program based on Microsoft Access which automatically generates all possible haplotype pairs for a given unphased NAT2 genotype. NAT2 haplotypes are important to predict the NAT2 phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7234-0_7DOI Listing

Publication Analysis

Top Keywords

algorithm automated
4
automated evaluation
4
nat2
4
evaluation nat2
4
nat2 genotypes
4
genotypes n-acetyltransferase
4
n-acetyltransferase nat2
4
nat2 genotyping
4
genotyping pcr
4
pcr rflp-based
4

Similar Publications

The advantages of lexicon-based sentiment analysis in an age of machine learning.

PLoS One

January 2025

Department of Political Science, Middlebury College, Middlebury, Vermont, United States of America.

Assessing whether texts are positive or negative-sentiment analysis-has wide-ranging applications across many disciplines. Automated approaches make it possible to code near unlimited quantities of texts rapidly, replicably, and with high accuracy. Compared to machine learning and large language model (LLM) approaches, lexicon-based methods may sacrifice some in performance, but in exchange they provide generalizability and domain independence, while crucially offering the possibility of identifying gradations in sentiment.

View Article and Find Full Text PDF

Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.

Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.

View Article and Find Full Text PDF

A glow-curve analysis code was previously developed in C++ to analyze thermoluminescent dosimeter glow curves using automated peak detection while a first-order kinetics model. A newer version of this code was implemented to improve the automated peak detection and curve fitting models. The Stochastic Gradient Descent Algorithm was introduced to replace the prior approach of taking first and second-order derivatives for peak detection.

View Article and Find Full Text PDF

In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.

View Article and Find Full Text PDF

Third trimester fetal 4D flow MRI with motion correction.

Magn Reson Med

January 2025

Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Purpose: To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.

Methods: A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!