Considerable evidences have shown that both heat shock transcription factor 1 (HSF1) and autophagy can attenuate the sensitivity of hepatocellular carcinoma (HCC) cells to chemotherapeutic reagents. However, it is still little known whether HSF1 is associated with autophagy in regulating the chemosensitivity of HCC cells. In this study, we for the first time demonstrated that HSF1 markedly attenuated the killing effect of epirubicin (EPI) to HCC cells via enhancing the EPI-induced protective autophagy. Mechanistically, HSF1 upregulated autophagy related 4B (ATG4B) in HCC cells, which enhanced the EPI-triggered protective autophagy. Reporter assay showed that HSF1 increased the transcriptional activity of ATG4B gene promoter, and chromatin immunoprecipitation assay verified that HSF1 bound to the site (-1429 to -1417) in ATG4B gene promoter region. The experiments in nude mice showed that knockdown of HSF1 or ATG4B strengthened the anti-HCC effect of EPI in vivo. Collectively, these results revealed that HSF1 elevates ATG4B via promoting its transcription, which alleviates the sensitivity of EPI in HCC cells through enhancing protective autophagy, suggesting that the "HSF1/ATG4B/protective autophagy" pathway may be a novel target for developing sensitizing strategy to HCC chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2017.08.039 | DOI Listing |
Hum Cell
January 2025
Infectious Disease Laboratory, Chengdu Public Health Clinical Center, Chengdu, 610061, People's Republic of China.
Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.
View Article and Find Full Text PDFJ Med Virol
January 2025
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
Glucose-regulated protein 78 kDa (GRP78), a key marker of endoplasmic reticulum stress (ERS), is upregulated in hepatocellular carcinoma (HCC) tissues, but its role in hepatitis B virus (HBV)-induced tumorigenesis remains unclear. This study aimed to investigate the contribution of GRP78 to HBV-associated tumor development and explore the ERS pathways involved. The results showed that increased GRP78 expression in patients with HBV-related HCC was associated with a poor prognosis within the first 2 years following diagnosis.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
In this study, we delve into the intrinsic mechanisms of cell communication in hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we analyze multiple malignant cell subpopulations and cancer-associated fibroblast (CAF) subpopulations, revealing their interplay through receptor-ligand interactions, with a particular focus on SPP1. Subsequently, employing unsupervised clustering analysis, we delineate two clusters, C1 and C2, and compare their infiltration characteristics using various tools and metrics, uncovering heightened cytotoxicity and overall invasion abundance in C1.
View Article and Find Full Text PDFBr J Cancer
January 2025
Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
Background: Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death.
Methods: Hepatoma cells were treated with oxaliplatin.
Sci Rep
January 2025
Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
As immune-checkpoint inhibitors (ICIs) therapy has made great strides in hepatocellular carcinoma (HCC) treatment, improving patient response to this strategy has become the main focus of research. Accumulating evidence has shown that mA methylation plays a crucial role in the tumorigenesis and progression of HCC, while the precise impact of the mA demethylase ALKBH5 on the tumor immune microenvironment (TIME) of HCC remains poorly defined. The clinical significance of ALKBH5 and TIM3 were evaluated in human HCC tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!