Prevention of oxytosis-induced c-Raf down-regulation by (arylthio)cyclopentenone prostaglandins is neuroprotective.

Toxicology

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan. Electronic address:

Published: September 2017

Prolonged exposure to high concentrations of glutamate leads to cell type specific glutathione depletion and resulting oxidative stress, known as oxytosis. As a result of glutathione depletion, accumulation of reactive oxygen species and Ca influx are increased; however, the specific target of oxytosis has yet to be identified. In the present study, we focused on the effect of glutamate-induced oxidative stress on the extracellular-regulated protein kinase (ERK) pathway using the murine hippocampal HT22 cell line. Although the contribution of the ERK pathway to glutamate-induced oxytosis in HT22 cells is controversial, Western blot analysis revealed that glutamate caused down-regulation of mitogen-activated protein kinase kinase kinase (c-Raf) and a resulting decrease in the phosphorylation of c-Raf, as well as of mitogen-activated protein kinase kinase1/2 (MEK1/2) and ERK1/2, downstream components of the c-Raf/MEK/ERK pathway. Furthermore, neuroprotective (arylthio)cyclopentenone prostaglandins prevented glutamate-induced c-Raf down-regulation and consequently maintained the basal activity of c-Raf and its downstream signaling components. A pull-down assay using biotin-labeled cyclopentenone prostaglandins revealed that they preferentially bound to c-Raf relative to other signaling molecules of the ERK pathway, including Ras, MEK1/2, and ERK. These results suggest that neuroprotective (arylthio)cyclopentenone prostaglandins directly bind to c-Raf protein and protect cells from down-regulation of the c-Raf protein itself, resulting in neuroprotection against oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2017.09.006DOI Listing

Publication Analysis

Top Keywords

arylthiocyclopentenone prostaglandins
12
oxidative stress
12
protein kinase
12
erk pathway
12
c-raf
8
c-raf down-regulation
8
glutathione depletion
8
mitogen-activated protein
8
kinase kinase
8
neuroprotective arylthiocyclopentenone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!