Unlabelled: In this study, Type I collagen was extracted from fish scales asa potential alternative source of collagen for tissue engineering applications. Since unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo, additional methylation modification and 1,4-butanediol diglycidyl ether (BDE) crosslinking steps were used to improve the physicochemical properties of fish scale-derived collagen. Subsequently, in vivo studies using a murine model demonstrated the biocompatibility of the different fish scale-derived collagen patches. In general, favorable integration of the collagen patches to the surrounding tissues, with good infiltration of cells, blood vessels (BVs) and lymphatic vessels (LVs) were observed under growth factor-free conditions. Interestingly, significantly higher (p<0.05) number of LVs was found to be more abundant around collagen patches with methylation modification and BDE crosslinking. Overall, we have demonstrated the potential application of fish scale-derived collagen as a promising scaffolding material for various biomedical applications.
Statement Of Significance: Currently the most common sources of collagen are of bovine and porcine origins, although the industrial use of collagen obtained from non-mammalian species is growing in importance, particularly since they have a lower risk of disease transmission and are not subjected to any cultural or religious constraints. However, unmodified collagen typically has poor mechanical and degradation stability both in vitro and in vivo. Hence, in this study, Type I collagen was successfully extracted from fish scales and chemically modified and crosslinked. In vitro studies showed overall improvement in the physicochemical properties of the material, whilst in vivo implantation studies showed improvements in the growth of blood and lymphatic host vessels in the vicinity of the implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2017.09.001 | DOI Listing |
Int J Mol Sci
October 2024
National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan.
This study introduces a novel approach to addressing environmental issues by developing fish-scale carbon nanoparticles (FSCNPs) with a wide range of colors from discarded fish scales. The process involves hydrothermally synthesizing raw tamban (Sardinella) fish scales sourced from Universal Canning, Inc. in Zamboanga City, Philippines.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa.
The utilization of biowaste fillers in the development of high-density polyurethane (PU) foams has gained significant attention due to environmental and economic benefits. This study investigates the mechanical properties of PU foams reinforced with biowaste fillers extracted from fish scales (FS) and fish scale-derived collagen (FSC). The fish scales and collagen were characterized for their composition and integrated into PU foams at various loadings.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Environ Monit Assess
September 2024
Department of Environmental Science, Nagaland University, Lumami Campus, 798627, Nagaland, India.
Advances in green engineering and technology have revealed a number of environmentally acceptable alternatives for water purification. In line with this, recent advances in biosorption of pollutants from aqueous solutions using animal biowaste-based activated carbon (AC) are reported herein. Apart from the fish scale-derived AC which is extensively documented, animal bones, among the rest others, have been studied most widely, followed by hair and feathers.
View Article and Find Full Text PDFSaudi Dent J
August 2024
Department of Applied Sciences -University of Technology, Baghdad 10066, Iraq.
Objectives: This study investigates the impact of injected fish-scale-derived hydroxyapatite nanoparticles (FsHA-NPs) on orthodontic tooth movement (OTM) and the width of the periodontal ligament (PDL) space.
Materials And Methods: Twenty-six Wistar rats underwent mesial orthodontic traction with a force of 50 g for 21 days. Following the application of the orthodontic appliance, the rats were randomly divided into two groups: a control group, which received a 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!