The 1,2,4,7-cyclooctatetraenyl radical (C H ) has been synthesized for the very first time via the bimolecular gas-phase reaction of ground-state carbon atoms with 1,3,5-cycloheptatriene (C H ) on the triplet surface under single-collision conditions. The barrier-less route to the cyclic 1,2,4,7-cyclooctatetraenyl radical accesses exotic reaction intermediates on the triplet surface, which cannot be synthesized via classical organic chemistry methods: the triplet non-aromatic 2,4,6-cyclooctatriene (C H ) and the triplet aromatic 1,3,5,7-cyclooctatetraene (C H ). Our approach provides a clean gas-phase synthesis of this hitherto elusive cyclic radical species 1,2,4,7-cyclooctatetraenyl via a single-collision event and opens up a versatile, unconventional path to access this previously largely obscure class of cyclooctatetraenyl radicals, which have been impossible to access through classical synthetic methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201706861 | DOI Listing |
Inorg Chem
January 2025
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China.
Dative bonds are typically polar, weaker, and longer than electron-sharing covalent bonds. The intriguing diatomic BeF anion uniquely exhibits triple Be-F dative bonding with a considerable bond dissociation energy (BDE) of 88 kcal/mol. Here, we report exceptionally strong dative-bonded systems, [CO]BeF and [CO]BeF, with BDE values exceeding 155 kcal/mol by integrating [CO] and [CO] groups into the BeF framework.
View Article and Find Full Text PDFChempluschem
January 2025
L V Pisarzhevskii Institute of Physical Chemistry NAS of Ukraine: Institut fiziceskoj himii imeni L V Pisarzevskogo Nacional'na akademia nauk Ukraini, Department of free radicals, UKRAINE.
This study unveils a novel property of polyaniline by establishing its catalytic activity in heterogeneous hydrogenation with molecular hydrogen. Polyaniline was activated by heat-treating at different temperatures in a hydrogen atmosphere. The sample treated at 300 °C exhibited the highest catalytic activity for ethylene hydrogenation in the gas phase at atmospheric pressure and for p-nitrotoluene or α-methylstyrene hydrogenation in the liquid phase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.
Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.
Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
We report the synthesis and characterization of new, user-friendly gold(I) [Au(μ-(NH)CCF)] coordination polymer and [AuCl(NH(NH=)CCF)] complex. These compounds were investigated for potential application as precursors in chemical vapor deposition (CVD) and focused electron/ion beam-induced deposition (FEBID/FIBID), which are additive methods to produce nanomaterials. Single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy were used to determine the complexes' composition and structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!