SH-SY5Y neuroblastoma cells are frequently used for different neuronal cell culture models. As there is no "gold-standard", miscellaneous protocols exist to differentiate these cells into a neuronal cell type. Here, the aim was to find a differentiation condition making cells suitable for investigation of influenceability of synapses by environmental conditions in pharmacologic experiments. For this purpose, effects on synapse molecules should be somehow rateable and cells should be usable for functional analysis like calcium imaging. A system like this is desirable for example in basic research concerning schizophrenia, depression, autism or neurodegeneration as synaptic plasticity and neuronal maturation are known to have a significant impact in these diseases. Cells grown on laminin-coated glass cover slips and treated with 50 µM retinoic acid (RA) turned out to show most convincing morphological signs of neuronal differentiation and attached strongly to the ground, thereby also fulfilling preconditions for functional analysis. Systematic characterisation of this differentiation condition in comparison to non-treated controls revealed lower methylation rates and higher expression of most candidate molecules relevant for formation, preservation and function of synapses as well as differential function. In conclusion, this combination of differentiation strategy and markers seems to be a suitable system to estimate synapse modifications in basic research as it could help to identify possible dedifferentiating effects. To our knowledge, differentiation of SH-SY5Y has not been described as systematic before regarding comprehensiveness of the set of investigated synapse molecules and coverage of applied methods spanning from epigenetics to protein function. Furthermore, this is the first time that SH-SY5Y cells were differentiated on glass cover slips to an extent making them suitable for investigation of synapse molecules as part of stable intercellular connections in downstream functional analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00702-017-1769-9 | DOI Listing |
J Neurosci
January 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
The cell adhesion molecule Leucine-Rich Repeat Transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2.
View Article and Find Full Text PDFJ Physiol Sci
December 2024
Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8501, Japan. Electronic address:
Reactive oxygen species (ROS) are redox-signaling molecules involved in aging and lifestyle-related diseases. In the brain, in addition to the production of ROS as byproducts of metabolism, expression of ROS synthases has recently been demonstrated, suggesting possible involvement of ROS in various brain functions. This review highlights current knowledge on the relationship between ROS and brain functions, including their contribution to age-related decline in synaptic plasticity and cognitive function.
View Article and Find Full Text PDFScience
January 2025
Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
Synapses are organized by trans-synaptic adhesion molecules that coordinate assembly of pre- and postsynaptic specializations, which, in turn, are composed of scaffolding proteins forming liquid-liquid phase-separated condensates. Presynaptic teneurins mediate excitatory synapse organization by binding to postsynaptic latrophilins; however, the mechanism of action of teneurins, driven by extracellular domains evolutionarily derived from bacterial toxins, remains unclear. In this work, we show that only the intracellular sequence, a dimerization sequence, and extracellular bacterial toxin-derived latrophilin-binding domains of Teneurin-3 are required for synapse organization, suggesting that teneurin-induced latrophilin clustering mediates synaptogenesis.
View Article and Find Full Text PDFNeuron
January 2025
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA. Electronic address:
Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!