To investigate the repression of miR-184 on Stanniocalcin-2 (STC2) and how this axis affects the propagation, invasiveness and migration ability of glioblastoma cells. RT-PCR was employed to determine the miR-184 and STC2 mRNA expression both in tissues and cells. Western blot was employed to determine the protein expression levels. The cells were transfected via lipofection. MTT, colony formation, invasion and scratch healing assays were conducted to study the propagation, invasiveness and migratory ability of glioblastoma cells, respectively. The dual luciferase reporter gene assay was conducted to determine whether miR-184 could directly bind to STC2 mRNA 3'UTR. MiR-184 was under-expressed whereas STC2 was over-expressed in glioblastoma tissues and cell line. The up-regulation of miR-184 significantly suppressed the propagation, migratory ability and invasion of glioblastoma cells, whereas the over-expression of STC2 restored this effect. MiR-184 was confirmed to directly target STC2. MiR-184 could retard the propagation, invasiveness and migratory ability of glioblastoma cells by suppressing STC2.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12253-017-0298-zDOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
20
propagation invasiveness
12
ability glioblastoma
12
migratory ability
12
mir-184
8
invasiveness migration
8
employed determine
8
determine mir-184
8
stc2 mrna
8
invasiveness migratory
8

Similar Publications

Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.

View Article and Find Full Text PDF

Advancing cancer therapy with custom-built alternating electric field devices.

Bioelectron Med

January 2025

School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research.

View Article and Find Full Text PDF

To gain further insights into the importance of the unsaturated 1,4-ketoaldehyde moiety of ophiobolin A (OpA) for the potency and selectivity observed toward cancer stem cells, several derivatives were synthesized through controlled reduction and oxidations of the unsaturated aldehyde and ketone moieties. Structure elucidation of these new OpA derivatives was achieved through detailed NMR studies and comparison to OpA and known isolated congeners possessing variations in these regions. The relative stereochemistry of the newly generated stereocenters was determined by coupling constants in conjunction with conformational analyses (DFT) of the synthetic derivatives.

View Article and Find Full Text PDF

Molecular Mechanisms and Strategies for Inducing Neuronal Differentiation in Glioblastoma Cells.

Cell Reprogram

January 2025

Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.

Glioblastoma multiforme (GBM) is a highly invasive brain tumor, and traditional treatments combining surgery with radiochemotherapy have limited effects, with tumor recurrence being almost inevitable. Given the lack of proliferative capacity in neurons, inducing terminal differentiation of GBM cells or glioma stem cells (GSCs) into neuron-like cells has emerged as a promising strategy. This approach aims to suppress their proliferation and self-renewal capabilities through differentiation.

View Article and Find Full Text PDF

Encapsulated BV6 and SM164, two bivalent second mitochondria-derived activator of caspase (Smac) mimetics, in etoposide (ETO)-lipopolymer nanoparticles (NPs) have been developed to deplete inhibitor of apoptosis proteins (IAP), impair DNA, and produce antagonistic effects on glioblastoma multiforme (GBM) in nude mice. The NPs, composed of cocoa butter (CB) and polyvinyl alcohol (PVA), were stabilized by glycerol monostearate and Pluronic F-127, and grafted with transferrin (Tf) and wheat germ agglutinin (WGA) to dock the blood-brain barrier (BBB) and degenerated dopaminergic neurons. The dual-targeting NPs increased the BBB permeability of BV6, SM164 and ETO via recognizing Tf receptor (TfR) and N-acetylglucosamine that are abundantly expressed on brain microvascular endothelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!