Considerable evidence has shown that the Wnt/β-catenin pathway is involved in osteogenic differentiation in various stem cells. However, the role of Wnt/β-catenin pathway in regulating the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs), which are considered to be the progenitors of dental mesenchymal stem cells, remains unknown. In this study, we demonstrated that nuclear β-catenin was upregulated during EMSC osteogenic differentiation. The Wnt signalling inhibitor IWR-1-endo inhibited EMSC osteogenic differentiation, while the Wnt signalling agonist SKL2001 promoted it. Moreover, nuclear β-catenin was further upregulated by the overexpression of low-affinity nerve growth factor receptor (LNGFR) during EMSC osteogenic differentiation. Further experiments demonstrated that LNGFR overexpression enhanced EMSC osteogenic differentiation, while LNGFR silencing decreased it. Additionally, IWR-1-endo attenuated LNGFR-enhanced EMSC osteogenic differentiation. Collectively, our data reveal that LNGFR targets the Wnt/β-catenin pathway and positively regulates EMSC osteogenic differentiation, suggesting that Wnt/β-catenin pathway may be involved in the development of teeth and that the targeting Wnt/β-catenin pathway may have great potential for applications in dental tissue engineering regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591262 | PMC |
http://dx.doi.org/10.1038/s41598-017-11555-9 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts.
View Article and Find Full Text PDFRegen Biomater
November 2024
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.
A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Orthodontics, Stomatology School of Jilin University, No. 1500 Qinghua Road, ChaoYang Area, Changchun City, Jilin Province, P.R. China.
Objective: To investigating whether osteogenic differentiation of osteoblasts promoted by tension force (TF) is mediated by ephrinB2-EphB4 signaling.
Methods: TF was applied to MC3T3-E1 cells, then CCK-8 and live/dead staining were used to detect cell proliferation. Levels of osteogenic differentiation-related factors were detected by ALP staining, ARS staining, qPCR and western blot.
Cell Commun Signal
January 2025
Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.
Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!