Fennel is attracted attention as a useful resource as researching medicinal plant for drought tolerance. To elucidate the response mechanism in drought-sensitive and -tolerant genotypes of fennel leaf, a gel-free/label-free proteomic technique was used. Fifty-day-old plants were subjected to drought stress for 60days. The relative water and proline contents were decreased and increased in sensitive genotypes, respectively; however, they were not a big change in tolerant genotypes. Photosynthesis was decreased in the sensitive genotypes under drought; however, it was increased in the tolerant genotype. In both drought-sensitive and -tolerant genotypes, proteins related to protein metabolism and cell organization were predominately affected under drought stress. The abundance of phosphoribulokinase and phosphoglycerate kinase enzymes were decreased and increased in drought-sensitive and -tolerant genotypes, respectively; however, the abundance of RuBisCO and glyceraldehyde-3-phosphate dehydrogenase enzymes were increased and decreased in drought-sensitive and -tolerant genotypes, respectively. Under drought stress, the abundance of glycolysis-related proteins was decreased in sensitive genotypes; however, they were increased in tolerance genotypes. Commonly changed proteins with polyethylene glycol fractionation such as cobalamin-independent methionine synthase were decreased and increased in drought-sensitive and -tolerant genotypes, respectively. These results suggest that cobalamin-independent methionine synthetase is involved in the tolerance of drought-tolerant fennel leaf under drought stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2017.08.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!