Structure and diversity of human dendritic spines evidenced by a new three-dimensional reconstruction procedure for Golgi staining and light microscopy.

J Neurosci Methods

Federal University of Health Sciences, Department of Basic Sciences/Physiology, Porto Alegre, Brazil; Federal University of Rio Grande do Sul, Neuroscience Program, Porto Alegre, Brazil. Electronic address:

Published: January 2018

Background: Different approaches aim to unravel detailed morphological features of neural cells. Dendritic spines are multifunctional units that reflect cellular connectivity, synaptic strength and plasticity.

New Method: A novel three-dimensional (3D) reconstruction procedure is introduced for visualization of dendritic spines from human postmortem brain tissue using brightfield microscopy. The segmentation model was based on thresholding the intensity values of the dendritic spine image along 'z' stacks. We used median filtering and removed false positives. Fine adjustments during image processing confirmed that the reconstructed image of the spines corresponded to the actual original data.

Results: Examples are shown for the cortical amygdaloid nucleus and the CA3 hippocampal area. Structure of spine heads and necks was evaluated at different angles. Our 3D reconstruction images display dendritic spines either isolated or in clusters, in a continuum of shapes and sizes, from simple to more elaborated forms, including the presence of spinule and complex 'thorny excrescences'.

Comparison With Existing Methods: The procedure has the advantages already described for the adapted "single-section" Golgi method, since it provides suitable results using human brains fixed in formalin for long time, is relatively easy, requires minimal equipment, and uses an algorithm for 3D reconstruction that provides high quality images and more precise morphological data.

Conclusion: The procedure described here allows the reliable visualization and study of human dendritic spines with broad applications for normal controls and pathological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2017.09.001DOI Listing

Publication Analysis

Top Keywords

dendritic spines
20
human dendritic
8
three-dimensional reconstruction
8
reconstruction procedure
8
dendritic
6
spines
6
structure diversity
4
human
4
diversity human
4
spines evidenced
4

Similar Publications

Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release.

View Article and Find Full Text PDF

Microglial-Biomimetic Memantine-Loaded Polydopamine Nanomedicines for Alleviating Depression.

Adv Mater

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.

Depression is a common psychiatric disorder, and monoamine-based antidepressants as first-line therapy remain ineffective in some patients. The synergistic modulation of neuroinflammation and neuroplasticity could be a major strategy for treating depression. In this study, an inflammation-targeted microglial biomimetic system, PDA-Mem@M, is reported for treating depression.

View Article and Find Full Text PDF

Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition.

Neuron

January 2025

Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging.

View Article and Find Full Text PDF

Given the influence of cognitive abilities on life outcomes, there is inherent value in identifying genes involved in controlling learning and memory. Further, cognitive dysfunction is a core feature of many neuropsychiatric disorders. Here, we use a combinatory in silico approach to identify human gene targets that will have an especially high likelihood of individually and directly impacting cognition.

View Article and Find Full Text PDF

The effects of estrogen depletion in female rats: differential influences on somato-motor and sensory cortices.

Biogerontology

January 2025

Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.

Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!