A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing biopharmaceutical performance of an anticancer drug by long chain PUFA based self-nanoemulsifying lipidic nanomicellar systems. | LitMetric

Enhancing biopharmaceutical performance of an anticancer drug by long chain PUFA based self-nanoemulsifying lipidic nanomicellar systems.

Eur J Pharm Biopharm

University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India. Electronic address:

Published: December 2017

The aim of this study was to develop polyunsaturated fatty acid (PUFA) long chain glyceride (LCG) enriched self-nanoemulsifying lipidic nanomicelles systems (SNELS) for augmenting lymphatic uptake and enhancing oral bioavailability of docetaxel and compare its biopharmaceutical performance with a medium-chain fatty acid glyceride (MCG) SNELS. Equilibrium solubility and pseudo ternary phase studies facilitated the selection of suitable LCG and MCG. The critical material attributes (CMAs) and critical process parameters (CPPs) were earmarked using Placket-Burman Design (PBD) and Fractional Factorial Design (FFD) for LCG- and MCG-SNELS respectively, and nano micelles were subsequently optimized using I- and D-optimal designs. Desirability function unearthed the optimized SNELS with T <5min, D <100nm, Rel >85% and Perm >75%. The SNELS demonstrated efficient biocompatibility and energy dependent cellular uptake, reduced P-gp efflux and increased permeability using bi-directional Caco-2 model. Optimal PUFA enriched LCG-SNELS exhibited distinctly superior permeability and absorption parameters during ex vivo permeation, in situ single pass intestinal perfusion, lymphatic uptake and in vivo pharmacokinetic studies over MCG-SNELS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2017.09.001DOI Listing

Publication Analysis

Top Keywords

biopharmaceutical performance
8
long chain
8
self-nanoemulsifying lipidic
8
fatty acid
8
lymphatic uptake
8
enhancing biopharmaceutical
4
performance anticancer
4
anticancer drug
4
drug long
4
chain pufa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!