Gas-generating catalysis is important to many energy-related research fields, such as photocatalytic water splitting, water electrolysis, etc. The technique of single-nanoparticle catalysis is an effective way to search for highly active nanocatalysts and elucidate the reaction mechanism. However, gas-generating catalysis remains difficult to investigate at the single-nanoparticle level because product gases, such as H and O, are difficult to detect on an individual nanoparticle. Here, we successfully find that nanobubbles can be used to study the gas-generating catalysis, i.e., H generation from formic acid dehydrogenation on a single Pd-Ag nanoplate, with a high time resolution (50 ms) via dark-field microscopy. The research reveals that the nanobubble evolution process includes nucleation time and lifetime. The nucleation rate of nanobubbles is proportional to the catalytic activity of a single nanocatalyst. The relationship between the catalytic activity and the nucleation rate is quantitatively described by a mathematical model, which shows that an onset reaction rate (r) exists for the generation of nanobubbles on a single Pd-Ag nanoplate. The research also reveals that a Pd-Ag nanoplate with larger size usually has a higher activity. However, some large-sized ones still have low activities, indicating the size of the Pd-Ag nanoplate is not the only key factor for the activity. Notablely, further research shows that Pd content is the key factor for the activity of single Pd-Ag nanoplates with similar size. The methodology and knowledge acquired from this research are also applicable to other important gas-generating catalysis reactions at the single-nanoparticle level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b08523DOI Listing

Publication Analysis

Top Keywords

gas-generating catalysis
20
pd-ag nanoplate
16
single pd-ag
12
study gas-generating
8
single-nanoparticle level
8
nucleation rate
8
catalytic activity
8
activity single
8
key factor
8
factor activity
8

Similar Publications

A Self-Catalytic NO/O Gas-Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief.

Adv Mater

September 2024

Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China.

Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru ions, creating HRRu nanozymes that merge NOS and CAT functionalities.

View Article and Find Full Text PDF

Au-Pt Coating Improved Catalytic Stability of Au@AuPt Nanoparticles for Pressure-Based Point-of-Care Detection of O157:H7.

ACS Appl Mater Interfaces

July 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Point-of-care testing (POCT) technologies facilitate onsite detection of pathogens in minutes to hours. Among various POCT approaches, pressure-based sensors that utilize gas-generating reactions, particularly those catalyzed by nanozymes (e.g.

View Article and Find Full Text PDF

A volumetric bar-chart chip (V-chip) is a microfluidic device based on distance-based quantitative measurement that visualizes analyte concentration without the need for apparatus or data processing. This typically utilizes special receptors and catalysis parts that generate oxygen, so ink can be moved inside the channels, and enables instant visual quantitation of the analyte. However, the low stability of some macromolecules, the use of expensive catalysts, and difficulty in controlling the process cause inaccurate readings, and therefore, limit further development and the use of these systems.

View Article and Find Full Text PDF

Nanobubbles: An Effective Way to Study Gas-Generating Catalysis on a Single Nanoparticle.

J Am Chem Soc

October 2017

Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS) , Suzhou 215123, China.

Gas-generating catalysis is important to many energy-related research fields, such as photocatalytic water splitting, water electrolysis, etc. The technique of single-nanoparticle catalysis is an effective way to search for highly active nanocatalysts and elucidate the reaction mechanism. However, gas-generating catalysis remains difficult to investigate at the single-nanoparticle level because product gases, such as H and O, are difficult to detect on an individual nanoparticle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!