Background: India is undergoing rapid urbanization with simultaneous increases in the prevalence of cardiovascular disease (CVD). As urban areas become home to an increasing share of the world's population, it is important to understand relationships between the built environment and progression towards CVD.

Objective: We assessed associations between multiple measures of the built environment and biomarkers of early vascular aging (EVA) in the Population Study of Urban, Rural and Semiurban Regions for the Detection of Endovascular Disease and Prevalence of Risk Factors and Holistic Intervention Study (PURSE-HIS) in Chennai, India.

Methods: We performed a cross-sectional analysis of 3,150 study participants. EVA biomarkers included systolic and diastolic blood pressure (SBP and DBP), central pulse pressure (cPP) and flow-mediated dilatation (FMD). Multiple approaches were used to assign residential exposure to factors of the built environment: Moderate Resolution Imaging Spectroradiometer (MODIS)-derived normalized difference vegetation index (NDVI), a measure of vegetation health and greenness; Landsat-derived impervious surface area (ISA); and Visible Infrared Imaging Radiometer Suite (VIIRS)-derived nighttime lights (NTL). Multivariable regression models were used to assess associations between each built environment measure and biomarkers of EVA, adjusting for age, body mass index (BMI), cooking fuel type, energy intake, sex, physical activity, smoking, socioeconomic status, and stress.

Results: Residing in areas with higher ISA or NTL, or lower greenness, was significantly associated with elevated SBP, DBP, and cPP, and with lower FMD, adjusting for age, BMI, sex, smoking status, and other CVD risk factors. An interquartile range decrease in greenness had the largest increase in SBP [4.3 mmHg (95% CI: 2.9, 5.6)], DBP [1.2 mmHg (95% CI: 0.4, 2.0)] and cPP [3.1 mmHg (95% CI: 2.0, 4.1)], and the largest decrease in FMD [-1.5% (95%CI: -2.2%, -0.9%].

Conclusion: Greenness, ISA, and NTL were associated with increased SBP, DBP, and cPP, and with reduced FMD, suggesting a possible additional EVA pathway for the relationship between urbanization and increased CVD prevalence in urban India. https://doi.org/10.1289/EHP541.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5783666PMC
http://dx.doi.org/10.1289/EHP541DOI Listing

Publication Analysis

Top Keywords

built environment
16
sbp dbp
12
impervious surface
8
surface area
8
nighttime lights
8
vascular aging
8
risk factors
8
adjusting age
8
isa ntl
8
dbp cpp
8

Similar Publications

Health impacts of asphalt emissions: Examining neurological risks and the need for long-term exposure mitigation.

J Hazard Mater

December 2024

College of Health Solutions and School of Molecular Sciences, Arizona State University, 850 N 5th Street, Phoenix, AZ 85004, USA.

Asphalt, widely used in infrastructure, emits complex chemical mixtures throughout its service life, posing significant risks to human health and the environment. This expanded understanding extends the concern from a construction-related hazard to a broader public health issue, especially affecting vulnerable populations like children who play on blacktop surfaces. Despite increased awareness, the specific mechanisms behind asphalt emissions, their impact on asphalt deterioration, and their effects on the human nervous system remain poorly understood.

View Article and Find Full Text PDF

Carbon Dots-Modified Hollow Mesoporous Photonic Crystal Materials for Sensitivity- and Selectivity-Enhanced Sensing of Chloroform Vapor.

Nanomicro Lett

December 2024

Department of Chemistry and Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, People's Republic of China.

Chloroform and other volatile organic pollutants have garnered widespread attention from the public and researchers, because of their potential harm to the respiratory system, nervous system, skin, and eyes. However, research on chloroform vapor sensing is still in its early stages, primarily due to the lack of specific recognition motif. Here we report a mesoporous photonic crystal sensor incorporating carbon dots-based nanoreceptor (HMSS@CDs-PCs) for enhanced chloroform sensing.

View Article and Find Full Text PDF

Extending the Environmental influences on Child Health Outcomes (ECHO) Cohort through 2030: Rationale and study protocol.

PLoS One

December 2024

Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.

Early life environmental exposures, even those experienced before conception, can shape health and disease trajectories across the lifespan. Optimizing the detection of the constellation of exposure effects on a broad range of child health outcomes across development requires considerable sample size, transdisciplinary expertise, and developmentally sensitive and dimensional measurement. To address this, the National Institutes of Health (NIH) Environmental influences on Child Health Outcomes (ECHO) Cohort Study is an observational longitudinal pediatric cohort study.

View Article and Find Full Text PDF

This paper presents the first representative survey of U.S. adults' opinions on microbiome engineering within the built environment, revealing public awareness, perceived benefits and risks, and attitudes toward genetically engineered microbiomes.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a multifactorial polygenic disease that develops as a result of a complex interaction of numerous genetic factors and the external environment. Accordingly, the contribution of each of them separately is usually not large and may significantly depend on the state of other accompanying factors. The purpose of the study was to search for informative predictors of MI risk based on polygenic analysis of polymorphic variants of (1) the antioxidant defense enzyme genes PON1 (rs662), PON2 (rs7493), CAT (rs1001179), MSRA (rs10098474) and GSTP1 (rs1695); (2) the apoptosis genes CASP8 (rs3834129), TP53 (rs1042522) and BCL2 (rs12454712); and (3) the inflammation genes CRP (rs1205), CX3CR1 (rs3732378), IL6 (rs1800795) and CCL2 (rs1024611).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!