2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; polycyclic aromatic hydrocarbon) is a persistent and ubiquitous environmental contaminant that causes a wide variety of deleterious effects. In this study, the DNA damage and apoptotic activity induced by TCDD was examined using in silico and in vitro approaches. In silico study showed that conformational changes and energies involved in the binding of TCDD to cytochrome P450 1B1 (CYP1B1) were crucial for its target proteins. Moreover, activated TCDD had high affinity to bind with aryl hydrocarbon receptor (AhR), with a binding energy of -564.7 Kcal/mol. Further, TCDD-CYP1B1 complex showed strong binding affinity for caspase 3, showing a binding energy of -518.5 Kcal/mol, and the docking of caspase inhibitors in the complex showed weak interaction with low binding energy as compared to TCDD-CYP1B1 caspase complexes. Interestingly, TCDD-induced apoptosis was significantly suppressed in Ac-DEVD-CMK-pretreated cells. The DNA damage activity of TCDD was quantified by comet tail formation and γ-H2AX foci formation in HaCaT cells. The role of CYP1B1 and AhR in DNA damage and apoptosis was demonstrated, and clotrimazole as well as knockdown of CYP1B1 and AhR could inhibit TCDD activation and suppress DNA damage followed by apoptosis in HaCaT cells. Moreover, TCDD increased expression of p53 and PUMA and our data showed that TCDD induced DNA damage followed by p53-mediated apoptosis. This study highlights the critical role of CYP1B1 and AhR in TCDD activity and proposes that inhibition of these key molecules might serve as a potential therapeutic approach for treatment of allergy and cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2017.08.012DOI Listing

Publication Analysis

Top Keywords

dna damage
24
binding energy
12
cyp1b1 ahr
12
tcdd
9
p53-mediated apoptosis
8
hydrocarbon receptor
8
hacat cells
8
role cyp1b1
8
damage apoptosis
8
dna
6

Similar Publications

Background And Hypothesis: Gut dysbiosis characterized by an imbalance in pathobionts (Enterobacter, Escherichia and Salmonella) and symbionts (Bifidobacterium, Lactobacillus and Prevotella) can occur during chronic kidney disease (CKD) progression. We evaluated the associations between representative symbionts (Bifidobacterium and Lactobacillus) and pathobionts (Enterobacteriaceae) with kidney function in persons with autosomal dominant polycystic kidney disease (ADPKD).

Methods: In this cross-sectional study, 29 ADPKD patients were matched to 15 controls at a 2:1 ratio.

View Article and Find Full Text PDF

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.

View Article and Find Full Text PDF

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!