Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590859PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183748PLOS

Publication Analysis

Top Keywords

simple sequence
16
sequence repeat
12
endophyte species
12
repeat elements
12
repeat
8
structure sequence
8
epichloë endophyte
8
insights ancestral
8
hybridization events
8
species
8

Similar Publications

This study introduces EpiAgePublic, a new method to estimate biological age using only three specific sites on the gene known for its connection to aging. Unlike traditional methods that require complex and extensive data, our model uses a simpler approach that is well-suited for next-generation sequencing technology, which is a more advanced method of analyzing DNA methylation. This new model overcomes some of the common challenges found in older methods, such as errors due to sample quality and processing variations.

View Article and Find Full Text PDF

Background/objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) among vaccinees and their contacts. A novel OPV2 vaccine (nOPV2) with enhanced genetic stability was developed recently; type 1 and type 3 nOPV strains were engineered using the nOPV2 genome as a backbone by replacing the capsid precursor polyprotein (P1) with that of Sabin strains type 1 and type 3, respectively.

View Article and Find Full Text PDF

Diversity and Functional Insights into Endophytic Fungi in Halophytes from West Ordos Desert Ecosystems.

J Fungi (Basel)

January 2025

Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China.

Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their root endophytic fungi, which have been rarely reported on.

View Article and Find Full Text PDF

Blink detection is considered a useful indicator both for clinical conditions and drowsiness state. In this work, we propose and compare deep learning architectures for the task of detecting blinks in video frame sequences. The first step is the training and application of an eye detector that extracts the eye regions from each video frame.

View Article and Find Full Text PDF

Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!