Catalytic Activity Control via Crossover between Two Different Microstructures.

J Am Chem Soc

Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.

Published: October 2017

Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g., water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in nonpolar solvent (e.g., toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in situ TEM and leads to a drastic modulation of catalytic activity toward the gas-phase selective oxidation of alcohols. On the basis of the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b05476DOI Listing

Publication Analysis

Top Keywords

catalytic activity
16
control crossover
8
transformation mtp
8
catalytic
5
activity control
4
crossover microstructures
4
microstructures metal
4
metal nanocatalysts
4
nanocatalysts hold
4
hold great
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

Generative artificial intelligence (AI) models trained on natural protein sequences have been used to design functional enzymes. However, their ability to predict individual reaction steps in enzyme catalysis remains unclear, limiting the potential use of sequence information for enzyme engineering. In this study, we demonstrated that sequence information can predict the rate of the S2 step of a haloalkane dehalogenase using a generative maximum-entropy (MaxEnt) model.

View Article and Find Full Text PDF

From Monocyclization to Pentacyclization: A Versatile Plant Cyclase Produces Diverse Sesterterpenes with Anti-Liver Fibrosis Potential.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.

A prolific multi-product sesterterpene synthase CbTPS1 is characterized from the medicinal Brassicaceae plant Capsella bursa-pastoris. Twenty different sesterterpenes including 16 undescribed compounds, possessing 10 different mono-/di-/tri-/tetra-/penta-carbocyclic skeletons, including the unique 15-membered macrocyclic and 24(15→14)-abeo-capbuane scaffolds, are isolated and structurally elucidated from engineered Escherichia coli strains expressing CbTPS1. Site-directed mutagenesis assisted by molecular dynamics simulations resulted in the variant L354M with up to 13.

View Article and Find Full Text PDF

Transketolase attenuates the chemotherapy sensitivity of glioma cells by modulating R-loop formation.

Cell Rep

January 2025

Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China. Electronic address:

Glioblastoma (GBM) is a highly lethal malignant brain tumor with poor survival rates, and chemoresistance poses a significant challenge to the treatment of patients with GBM. Here, we show that transketolase (TKT), a metabolic enzyme in the pentose phosphate pathway (PPP), attenuates the chemotherapy sensitivity of glioma cells in a manner independent of catalytic activity. Mechanistically, chemotherapeutic drugs can facilitate the translocation of TKT protein from the cytosol into the nucleus, where TKT physically interacts with XRN2 to regulate the resolution and removal of R-loops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!