The Baltic Sea is a marginal sea characterized by stagnation periods of several years. Oxygen consumption in its deep waters leads to the buildup of sulfide from sulfate reduction. Some of the microorganisms responsible for these processes also transform reactive ionic mercury to neurotoxic methylmercury. Episodic inflows of oxygenated saline water from the North Sea temporally re-establish oxic life in deep waters of the Baltic Sea. Thus, this sea is an especially important region to better understand mercury species distributions in connection with variable redox conditions. Mercury species were measured on three Baltic Sea campaigns, during the preinflow, ongoing inflow, and subsiding inflow of water, respectively, to the central basin. The inflowing water caused the removal of total mercury by 600 nmol m and of methylmercury by 214 nmol m in the Gotland Deep, probably via attachment of the mercury compounds to sinking particles. It appears likely that the consequences of the oxygenation of Baltic Sea deep waters, which are the coprecipitation of mercury species and the resettlement of the oxic deep waters, could lead to the enhanced transfer of accumulated mercury and methylmercury to the planktonic food chain and finally to fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b03011 | DOI Listing |
Sci Total Environ
January 2025
Leibniz Institute for Baltic Sea (IOW), Marine Chemistry Department, Seestraße 15, 18119 Rostock, Germany; IOW, Seestraße 15, 18119 Rostock, Germany. Electronic address:
The Baltic Sea, a semi-enclosed marginal sea with a catchment area four times its size, acts as a sink and continues to show detectable levels of persistent organic pollutants (POPs) in its sediments. This is attributed to the synthesis and industrial use of commercial polychlorinated biphenyls (PCB) products, as well as the widespread use and discharge of certain chlorinated pesticides into the natural environment during the last century. Our study investigates chlorinated hydrocarbon pollutants, the polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolites as well as hexachlorobenzene (HCB) in sediments based on several short sediment cores from different basins covering almost the entire Baltic Sea.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany.
Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia.
The grey seal () is a fish-eating mammal and an apex predator in the Baltic Sea. It serves as the definitive host for several parasite species that utilize fish as intermediate or paratenic hosts. This study aimed to determine the endoparasite fauna of grey seals by-caught in the Latvian commercial coastal fishery and to analyze the impact of parasites on the seals' nutritional status.
View Article and Find Full Text PDFViruses
December 2024
Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
In the original publication [...
View Article and Find Full Text PDFPathogens
December 2024
Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, LV-1067 Riga, Latvia.
Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!