Mutations in GLI3, which encodes a transcription factor of the Hedgehog signaling pathway, cause several developmental anomalies linked to inappropriate tissue patterning. Here, we report a novel missense variant in the fifth zinc finger domain of GLI3 (c.1826G>A; p.(Cys609Tyr)) initially identified in a proband with preaxial polydactyly type IV, developmental delay, sensorineural hearing loss, skeletal, and genitourinary anomalies. Additional family members exhibited various digital anomalies such as preaxial polydactyly, syndactyly, and postaxial polydactyly either in isolation or combined. Functional studies of Cys609Tyr GLI3 in cultured cells showed abnormal GLI3 processing leading to decreased GLI3 repressor production, increased basal transcriptional activity, and submaximal GLI reporter activity with Hedgehog pathway activation, thus demonstrating an intriguing molecular mechanism for this GLI3-related phenotype. Given the complexity of GLI3 post-translational processing and opposing biological functions as a transcriptional activator and repressor, our findings highlight the importance of performing functional studies of presumed GLI3 variants. This family also demonstrates how GLI3 variants are variably expressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685880 | PMC |
http://dx.doi.org/10.1002/ajmg.a.38415 | DOI Listing |
Physiol Rep
January 2025
Developmental Biology and Cancer Research and Teaching Department, University College London, Great Ormond Street Institute of Child Health, London, UK.
Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.
View Article and Find Full Text PDFOncogene
January 2025
Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
The functional activation of the androgen receptor (AR) and its interplay with the aberrant Hh/Gli cascade are pivotal in the progression of castration-resistant prostate cancer (CRPC) and resistance to AR-targeted therapies. Our study unveiled a novel role of the truncated form of Gli (t-Gli3) in advancing CRPC. Investigation into Gli3 regulation revealed a Smo-independent mechanism for its activation.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
The GLI1/GLI2/GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R), and in activation of GLI2.
View Article and Find Full Text PDFCereb Cortex
December 2024
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
The cerebral cortex is critical for advanced cognitive functions and relies on a vast network of neurons to carry out its highly intricate neural tasks. Generating cortical neurons in accurate numbers hinges on cell signaling orchestrated by primary cilia to coordinate the proliferation and differentiation of cortical stem cells. While recent research has shed light on multiple ciliary roles in corticogenesis, specific mechanisms downstream of cilia signaling remain largely unexplored.
View Article and Find Full Text PDFHum Mol Genet
December 2024
Department of Human Genetics, McGill University, 3640 rue University, Montreal, QC, H3A 0C7, Canada.
Background: Primary ciliopathies are a heterogeneous group of rare disorders predominantly caused by autosomal-recessive genetic variants that disrupt non-motile ciliary function. They often manifest as a syndromic phenotype, frequently involving the kidney. Biallelic pathogenic variants in C2CD3 disrupt ciliogenesis and Sonic Hedgehog (SHH) signaling, resulting in a severe ciliopathy (Orofaciodigital syndrome XIV, OMIM 615948).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!