Anion binding by p-aminoazobenzene-derived aromatic amides: spectroscopic and electrochemical studies.

Photochem Photobiol Sci

Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.

Published: October 2017

The synthesis and complexing properties of p-aminoazobenzene-derived mono-, bis-, and trisamides were described. Ligands 3 and 4 bind anions, including fluorides, chlorides, bromides, acetates, benzoates, dihydrogen phosphates, hydrogen sulfates, and p-toluenesulfonates, in chloroform forming 1 : 1 complexes. The highest value of stability constant was evaluated for the 4-F complex (log K = 5.63 ± 0.21). On the basis of H NMR, and FTIR spectroscopy, the possible nature of the ligand-anion interactions was proposed. The E ⇄ Z isomerization process of tripodal amide 4 in chloroform was studied. The effect of anions on Z to E thermal back isomerization was investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7pp00245aDOI Listing

Publication Analysis

Top Keywords

anion binding
4
binding p-aminoazobenzene-derived
4
p-aminoazobenzene-derived aromatic
4
aromatic amides
4
amides spectroscopic
4
spectroscopic electrochemical
4
electrochemical studies
4
studies synthesis
4
synthesis complexing
4
complexing properties
4

Similar Publications

Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.

Photosynth Res

January 2025

Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

Exploring the Capability of Mechanically Interlocked Molecules in Anion Recognition: A Computational Insight.

ACS Phys Chem Au

January 2025

Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.

The present study elucidated the role of both hydrogen and halogen bonds, from an electronic structure perspective, in the anion recognition process by the [2]catenane () containing a moiety with hydrogen bond donors entangled with another macrocyclic halogen bond donor. Spherical and nonspherical anions have been employed. The roles of different σ-hole donors have also been considered.

View Article and Find Full Text PDF

The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!