Computational Study of Low Interlayer Friction in TiC (n = 1, 2, and 3) MXene.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32601, United States.

Published: October 2017

The friction of adjacent TiC (n = 1, 2, and 3) MXene layers is investigated using density functional theory (DFT) calculations and classical molecular dynamics simulations with ReaxFF potentials. The calculations reveal the sliding pathways in all three MXene systems with low energy barriers. The friction coefficients for interlayer sliding are evaluated using static calculations. Both DFT and ReaxFF methods predict friction coefficients between 0.24 and 0.27 for normal loads less than 1.2 GPa. The effect of titanium (Ti) vacancies in sublayers and terminal oxygen (O) vacancies at surfaces on the interlayer friction is further investigated using the ReaxFF potential. These defects are found to increase the friction coefficients by increasing surface roughness and creating additional attractive forces between adjacent layers. However, these defective MXenes still maintain friction coefficients below 0.31. We also consider functionalized TiC MXene terminated with -OH and -OCH and find that compared to the -O-terminated surface both groups further reduce the interlayer friction coefficient to 0.10-0.14.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b09895DOI Listing

Publication Analysis

Top Keywords

friction coefficients
16
interlayer friction
12
tic mxene
12
friction
8
computational study
4
study low
4
interlayer
4
low interlayer
4
friction tic
4
mxene
4

Similar Publications

Purpose The infrapatellar fat pad (IFP) has the lowest pain threshold among all knee joint components and causes anterior knee pain after knee arthroplasty. It has been reported that selective muscle atrophy of the vastus medialis (VM) and fibrosis of the IFP may develop following knee joint surgery. Ultrasound enables visualization of IFP deformation (A1) from within the joint to the proximal area in response to muscle contraction, and this may be helpful in developing preventive and therapeutic strategies for IFP fibrosis.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

Surface Fluorination of Silicone Rubber with Enhanced Stain Resistance and Slip Properties.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.

Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.

View Article and Find Full Text PDF

Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!