The Ntsr1-Cre GN220 mouse expresses Cre-recombinase in corticothalamic (CT) neurons in neocortical layer 6. It is not known if the other major types of pyramidal neurons in this layer also express this enzyme. By electrophysiological recordings in slices and histological analysis of the uptake of retrogradely transported beads we show that Cre-positive neurons are CT and not corticocortical or corticoclaustral types. Furthermore, we show that Ntsr1-Cre-positive cells are immuno-positive for the nuclear transcription factor Forkhead box protein P2 (FoxP2). We conclude that Cre-expression is limited to a specific type of pyramidal neuron: CT. However, it appears as not all CT neurons are Cre-expressing; there are indications that the penetrance of the gene is about 90%. We demonstrate the utility of assigning a specific identity to individual neurons by determining that the CT neurons are potently modulated by acetylcholine acting on both nicotinic and muscarinic acetylcholine receptors. These results corroborate the suggested function of these neurons in regulating the gain of thalamocortical transfer of sensory information depending on attentional demand and state of arousal.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.24323DOI Listing

Publication Analysis

Top Keywords

ntsr1-cre gn220
8
neurons
7
cre-expressing neurons
4
neurons visual
4
visual cortex
4
cortex ntsr1-cre
4
gn220 mice
4
mice corticothalamic
4
corticothalamic depolarized
4
depolarized acetylcholine
4

Similar Publications

Cre-expressing neurons in the cortical white matter of Ntsr1-Cre GN220 mice.

Neurosci Lett

May 2018

Department of Clinical and Experimental Medicine, Linköping University, Sweden. Electronic address:

Genetically modified mouse strains that express Cre-recombinase in specific neuronal sub-populations have become widely used tools for investigating neuronal function. The Ntsr1-Cre GN220 mouse expresses this enzyme in corticothalamic neurons in layer 6 of cerebral cortex. We observed that about 7% of Cre-expressing cells in the primary visual cortex are found within the white matter bordering layer 6.

View Article and Find Full Text PDF

The Ntsr1-Cre GN220 mouse expresses Cre-recombinase in corticothalamic (CT) neurons in neocortical layer 6. It is not known if the other major types of pyramidal neurons in this layer also express this enzyme. By electrophysiological recordings in slices and histological analysis of the uptake of retrogradely transported beads we show that Cre-positive neurons are CT and not corticocortical or corticoclaustral types.

View Article and Find Full Text PDF

Understanding the role of corticothalamic projections in shaping visual response properties in the thalamus has been a longstanding challenge in visual neuroscience. Here, we take advantage of the cell-type specificity of a transgenic mouse line, the GN220-Ntsr1 Cre line, to manipulate selectively the activity of a layer 6 (L6) corticogeniculate population while recording visual responses in the dorsal lateral geniculate nucleus (dLGN). Although driving Ntsr1 projection input resulted in reliable reduction in evoked spike count of dLGN neurons, removing these same projections resulted in both increases and decreases in visually evoked spike count.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!