[F]AV-1451 binding to neuromelanin in the substantia nigra in PD and PSP.

Brain Struct Funct

Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.

Published: March 2018

This study investigated binding of [F]AV-1451 to neuromelanin in the substantia nigra of patients with Parkinson's disease (PD) and progressive supranuclear palsy (PSP). [F]AV-1451 is a positron emission tomography radiotracer designed to bind pathological tau. A post-mortem study using [F]AV-1451 discovered off-target binding properties to neuromelanin in the substantia nigra. A subsequent clinical study reported a 30% decrease in [F]AV-1451 binding in the midbrain of PD patients. A total of 12 patients and 10 healthy age-matched controls were recruited. An anatomical MRI and a 90-min PET scan, using [F]AV-1451, were acquired from all participants. The standardized uptake value ratio (SUVR) from 60 to 90 min post-injection was calculated for the substantia nigra, using the cerebellar cortex as the reference region. The substantia nigra was delineated using automated region of interest software. An independent samples ANOVA and LSD post hoc testing were used to test for differences in [F]AV-1451 SUVR between groups. Substantia nigra SUVR from 60 to 90 min was significantly greater in HC compared to both PSP and PD groups. Although the PD group had the lowest SUVR, there was no significant difference in substantia nigra uptake between PD and PSP. [F]AV-1451 may be the first PET radiotracer capable of imaging neurodegeneration of the substantia nigra in parkinsonisms. Further testing must be done in PD and atypical parkinsonian disorders to support this off-target use of [F]AV-1451.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00429-017-1507-yDOI Listing

Publication Analysis

Top Keywords

substantia nigra
32
neuromelanin substantia
12
[f]av-1451
9
[f]av-1451 binding
8
substantia
8
nigra
8
psp [f]av-1451
8
suvr 90 min
8
binding neuromelanin
4
psp
4

Similar Publications

The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives.

ACS Omega

January 2025

CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States.

Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors.

View Article and Find Full Text PDF

Background: The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!