Methylmercury (MeHg) is a pervasive and ubiquitous environmental neurotoxicant within aquatic ecosystems, known to alter behavior in fish and other vertebrates. This study sought to assess the behavioral effects of developmental MeHg exposure on larval yellow perch ()-a nonmodel fish species native to the Great Lakes. Embryos were exposed to MeHg (0, 30, 100, 300, and 1000 nM) for 20 h and then reared to 25 days post fertilization (dpf) for analyses of spontaneous swimming, visual motor response (VMR), and foraging efficiency. MeHg exposures rendered total mercury (THg) body burdens of 0.02, 0.21, 0.95, 3.14, and 14.93 μg/g (wet weight). Organisms exposed to 1000 nM exhibited high mortality; thus, they were excluded from downstream behavioral analyses. All MeHg exposures tested were associated with a reduction in spontaneous swimming at 17 and 25 dpf. Exposure to 30 and 100 nM MeHg caused altered locomotor output during the VMR assay at 21 dpf, whereas exposure to 100 nM MeHg was associated with decreased foraging efficiency at 25 dpf. For the sake of comparison, the second-lowest exposure tested here rendered a THg burden that represents the permissible level of consumable fish in the United States. Moreover, this dose is reported in roughly two-thirds of consumable fish species monitored in the United States, according to the Food and Drug Administration. Although the THg body burdens reported here were higher than expected in the environment, our study is the first to analyze the effects of MeHg exposure on fundamental survival behaviors of yellow perch larvae and advances in the exploration of the ecological relevance of behavioral end points.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579541 | PMC |
http://dx.doi.org/10.1021/acsomega.7b00227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!