Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations.

ACS Omega

Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Center for Computational Science, Center for Therapeutic Innovation Miller School of Medicine, Miami Project to Cure Paralysis, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States.

Published: August 2017

Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel -[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein-ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein-ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579542PMC
http://dx.doi.org/10.1021/acsomega.7b00553DOI Listing

Publication Analysis

Top Keywords

computational screening
8
virtual screening
8
cocrystal structures
8
binding
5
identification novel
4
novel class
4
class brd4
4
brd4 inhibitors
4
inhibitors computational
4
screening
4

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Enhancing Diagnostic Accuracy of Lung Nodules in Chest Computed Tomography Using Artificial Intelligence: Retrospective Analysis.

J Med Internet Res

January 2025

Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.

Background: Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accuracy of AI systems in identifying and measuring lung nodules on chest computed tomography (CT) scans remains unclear, which requires further evaluation.

View Article and Find Full Text PDF

The current study aimed to objectively evaluate the fit of a rectangular, tapered stem to the severely dysplastic hips on the basis of the proximal femoral anatomy and the dimensional properties of the stem. It was hypothesized that the stem size planned with accordance to the diaphyseal canal width alone can accommodate the distal femur successfully with no sizing mismatch. Forty-six patients (53 hips) suffering from secondary osteoarthritis due to hip dysplasia scheduled for total hip arthroplasty (THA) with a subtrochanteric transverse shortening osteotomy were included.

View Article and Find Full Text PDF

Prediction of hip fracture by high-resolution peripheral quantitative computed tomography in older Swedish women.

J Bone Miner Res

January 2025

Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.

The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!