During ischemia or inflammation of organs, intracellular pH can decrease if acid production exceeds buffering capacity. Thus, the microenvironment can expose parenchymal cells to a reduced extracellular pH which can alter pH-dependent intracellular functions. We have previously shown that while silencing caspase-8 in an ischemia reperfusion injury (IRI) model results in improved organ function and survival, removal of caspase-8 function in a donor organ can paradoxically result in enhanced receptor-interacting protein kinase 1/3- (RIPK1/3-) regulated necroptosis and accelerated graft loss following transplantation. In our current study, TRAIL- (TNF-related apoptosis-inducing ligand-) induced cell death at neutral pH and caspase-8 inhibition-enhanced RIPK1-dependent necroptotic death were confirmed. In contrast, both caspase-8 inhibition and RIPK1 inhibition attenuated cell death at a cell pH of 6.7. Cell death was attenuated with mixed lineage kinase domain-like (MLKL) silencing, indicating that MLKL membrane rupture, a distinctive feature of necroptosis, occurs regardless of pH. In summary, there is a distinct regulatory control of apoptosis and necroptosis in endothelial cells at different intracellular pH. These results highlight the complexity of modulating cell death and therapeutic strategies that may need to consider different consequences on cell death dependent on the model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572609 | PMC |
http://dx.doi.org/10.1155/2017/1503960 | DOI Listing |
Cell Death Differ
December 2024
Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA.
Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.
View Article and Find Full Text PDFSci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Basic Medicine, Dali University, Dali, 671003, Yunnan, China.
Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
December 2024
Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).
Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.
Sci Rep
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!