Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors.

Nat Commun

Imprinting and Cancer group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Avinguda Granvia, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.

Published: September 2017

It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589900PMC
http://dx.doi.org/10.1038/s41467-017-00639-9DOI Listing

Publication Analysis

Top Keywords

copy number
12
epigenetic alterations
8
imprinted methylation
8
cancer cell
8
cell lines
8
primary tumors
8
tumors imprinted
8
imprinted dmrs
8
methylation profiles
8
methylation
7

Similar Publications

Purpose: Induction of meiotic competence is a major goal of the controlled ovarian stimulation used in ART. Do factors intrinsic to the oocyte contribute to oocyte maturation? Deletions in mtDNA accumulate in long-lived post mitotic tissues and are found in human oocytes. If oogenesis cleanses the germline of deleterious deletions in mtDNA, meiotically competent oocytes should contain lower levels of mtDNA deletions vs.

View Article and Find Full Text PDF

Cell-free DNA release following psychosocial and physical stress in women and men.

Transl Psychiatry

January 2025

Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.

Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants.

View Article and Find Full Text PDF

Response to azathioprine treatment in autoimmune hepatitis is dependent on glutathione transferase genotypes.

Dig Liver Dis

January 2025

Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden. Electronic address:

Background: Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs).

Aims: Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH.

View Article and Find Full Text PDF

Classification of Fibro-osseous Tumors in the Craniofacial Bones using DNA Methylation and Copy Number Alterations.

Mod Pathol

January 2025

Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands; Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands. Electronic address:

Fibro-osseous tumors of the craniofacial bones are a heterogeneous group of lesions comprising cemento-osseous dysplasia (COD), cemento-ossifying fibroma (COF), juvenile trabecular ossifying fibroma (JTOF), psammomatoid ossifying fibroma (PsOF), fibrous dysplasia (FD), and low-grade osteosarcoma (LGOS) with overlapping clinicopathological features. However, their clinical behavior and treatment differ significantly, underlining the need for accurate diagnosis. Molecular diagnostic markers exist for subsets of these tumors, including GNAS mutations in FD, SATB2 fusions in PsOF, mutations involving the RAS-MAPK signaling pathway in COD, and MDM2 amplification in LGOS.

View Article and Find Full Text PDF

Previous studies have reported that mtDNA-CN of blood was associated with a series of aging-related diseases. However, it remains unknown whether mtDNA-CN can be a potential biomarker of acute aortic syndromes (AAS). The mtDNA-CN in blood of 190 male patients with AAS and 207 healthy controls were detected by standardized qPCR-based assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!