Type 2 diabetic patients have impaired bone quality, leading to increased fracture risk. Substantial evidence demonstrates that pulsed electromagnetic fields (PEMF) could resist osteopenia/osteoporosis induced by estrogen deficiency and disuse. However, the effects of PEMF on osteopenia/osteoporosis associated with diabetes, especially for more prevalent type 2 diabetes, remain poorly understood. We herein investigated the skeletal effects and mechanisms of PEMF (15 Hz, 20 Gs) on leptin receptor-deficient db/db mice with typical type 2 diabetic symptoms. Our µCT results showed that 12-week PEMF exposure significantly improved both cancellous and cortical bone microarchitecture in db/db mice. Three-point bending and biomechanical indentation testing demonstrated that PEMF improved whole-bone structural properties and tissue-level material properties in db/db mice. PEMF significantly promoted bone formation in db/db mice evidenced by increased serum osteocalcin and bone mineral apposition rate, whereas PEMF exerted no observable alteration in bone resorption. Real-time PCR showed that PEMF upregulated tibial gene expression of osteoblastogenesis-related of canonical Wnt/β-catenin signaling but not osteoclastogenesis-related RANKL-RANK signaling in db/db mice. Our findings demonstrate that PEMF improved bone quantity and quality with obvious anabolic activities in db/db mice, and imply that PEMF might become a clinically applicable treatment modality for improving bone quality in type 2 diabetic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589741 | PMC |
http://dx.doi.org/10.1038/s41598-017-11090-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!