Macrophages (MΦs) with mutations in cystic fibrosis transmembrane conductance regulator (CFTR) have blunted induction of PI3K/AKT signaling in response to TLR4 activation, leading to hyperinflammation, a hallmark of cystic fibrosis (CF) disease. Here, we show that Ezrin links CFTR and TLR4 signaling, and is necessary for PI3K/AKT signaling induction in response to MΦ activation. Because PI3K/AKT signaling is critical for immune regulation, Ezrin-deficient MΦs are hyperinflammatory and have impaired Pseudomonas aeruginosa phagocytosis, phenocopying CF MΦs. Importantly, we show that activated CF MΦs have reduced protein levels and altered localization of the remaining Ezrin to filopodia that form during activation. In summary, we have described a direct link from CFTR to Ezrin to PI3K/AKT signaling that is disrupted in CF, and thus promotes hyper-inflammation and weakens phagocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589856PMC
http://dx.doi.org/10.1038/s41598-017-11012-7DOI Listing

Publication Analysis

Top Keywords

pi3k/akt signaling
16
ezrin links
8
links cftr
8
cftr tlr4
8
tlr4 signaling
8
cystic fibrosis
8
signaling
6
ezrin
4
cftr
4
signaling orchestrate
4

Similar Publications

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Advances in understanding the role of squalene epoxidase in cancer prognosis and resistance.

Mol Biol Rep

January 2025

Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.

Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis.

View Article and Find Full Text PDF

Introduction: Breast cancer is one of the most common cancers in women and poses a serious threat to women's health. Circular RNAs (circRNAs) have been found to be specifically expressed in cancers and regulate the growth and death of tumor cells. The role of circRNAs in breast cancer remain unknown.

View Article and Find Full Text PDF

Background: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!