Membrane and Films Based on Novel Crown-Containing Dyes as Promising Chemosensoring Materials.

Materials (Basel)

Moscow State Academy of Veterinary Medicine and Biotechnology, Acad. Skryabina Str. 23, Moscow 109472, Russia.

Published: December 2010

This paper discusses several works on supramolecular systems such as monolayer and multilayer, polymer films of various crown-containing dyes, surface-active monomers and polymers. Design, production and investigation of the membrane nanostructures based on crown ethers is a rapidly developing field at the "junction" of materials sciences and nanotechnology. These nanostructures can serve as convenient models for studying the self-organization and molecular recognition processes at interfaces that are typical for biomembranes. Based on the results obtained for such structures by absorption and fluorescence spectroscopy, atomic force and Brewster-angle microscopy, surface pressure and surface potential isotherm measurements, the possibility of developing micro- and nanomaterials possessing a set of specified properties (including chemosensor, photochromic and photorefractive materials) is demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445816PMC
http://dx.doi.org/10.3390/ma3125293DOI Listing

Publication Analysis

Top Keywords

crown-containing dyes
8
membrane films
4
films based
4
based novel
4
novel crown-containing
4
dyes promising
4
promising chemosensoring
4
chemosensoring materials
4
materials paper
4
paper discusses
4

Similar Publications

Article Synopsis
  • A new compound, NI-SP, was created by linking a styrylpyridinium dye and a naphthalimide fluorophore using a "click" chemistry method.
  • NI-SP shows a selective fluorescent response to mercury (Hg) in water, with the efficiency of detection improved through resonance energy transfer (RET) and intramolecular charge transfer (ICT).
  • In biological tests, NI-SP was found to enter human lung cancer cells and effectively measure mercury levels within a concentration range of 0.7-6.0 μM.
View Article and Find Full Text PDF

The synthesis of new styryl dyes derived from 4-pyridine and 4-quinoline and having an ammonioalkyl N-substituent and benzocrown ether moieties of different sizes and with different sets of heteroatoms was developed. Spontaneous "head-to-tail" dimerization of these dyes via the formation of numerous hydrogen bonds between the terminal NH3(+) groups and crown ether moieties was detected in MeCN solutions. The stability constants of the dimeric complexes having pseudocyclic structure were studied by (1)H NMR titration.

View Article and Find Full Text PDF

Membrane and Films Based on Novel Crown-Containing Dyes as Promising Chemosensoring Materials.

Materials (Basel)

December 2010

Moscow State Academy of Veterinary Medicine and Biotechnology, Acad. Skryabina Str. 23, Moscow 109472, Russia.

This paper discusses several works on supramolecular systems such as monolayer and multilayer, polymer films of various crown-containing dyes, surface-active monomers and polymers. Design, production and investigation of the membrane nanostructures based on crown ethers is a rapidly developing field at the "junction" of materials sciences and nanotechnology. These nanostructures can serve as convenient models for studying the self-organization and molecular recognition processes at interfaces that are typical for biomembranes.

View Article and Find Full Text PDF

Styryl dyes 4a-e containing a 15-crown-5 ether unit and a quinoline residue with a sulfonatoalkyl or sulfonatobenzyl N-substituent were synthesized. The relationship between the photochemical behavior of these dyes and their aggregates derived from complexation with Mg(2+) in MeCN was studied using (1)H NMR and absorption spectroscopy. The E-isomers of 4a-e were shown to form highly stable dimeric (2:2) complexes with Mg(2+).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!