SAXS Studies of TiO₂ Nanoparticles in Polymer Electrolytes and in Nanostructured Films.

Materials (Basel)

Sincrotrone Trieste, ss. 14, km 163, 5 Basovizza, 34012 Trieste, Italy.

Published: November 2010

AI Article Synopsis

  • Polymer electrolytes like (PEO)₈ZnCl₂ combined with TiO₂ nanograins are promising for use in batteries and opto-electronic devices.
  • Research utilized advanced techniques such as SAXS, WAXD, and DSC to study how these TiO₂ nanograins affect the materials' structure and ionic conductivity.
  • The study also explored the temperature-induced phase transition of TiO₂ films, which are crucial in developing eco-friendly energy solutions like galvanic cells and advanced solar cells.

Article Abstract

Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO)₈ZnCl₂ polymer electrolytes were prepared from PEO and ZnCl₂. The nanocomposites (PEO)₈ZnCl₂/TiO₂ themselves contained TiO₂ nanograins. In this work, the influence of the TiO₂ nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS) simultaneously recorded with wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO₂) are widely used in the research of optical and photovoltaic devices. The TiO₂ films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS) spectra for each TiO₂ film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO₂ film as working electrode, and nanocomposite polymer as electrolyte.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445779PMC
http://dx.doi.org/10.3390/ma3114979DOI Listing

Publication Analysis

Top Keywords

polymer electrolytes
12
electrolytes nanostructured
8
tio₂ nanograins
8
x-ray scattering
8
tio₂ film
8
tio₂
7
saxs studies
4
studies tio₂
4
tio₂ nanoparticles
4
polymer
4

Similar Publications

Protons (H+) with the smallest size and fastest redox kinetics are regarded as competitive charge carriers in the booming Zn-organic batteries (ZOBs). Developing new H+-storage organic cathode materials with multiple ultralow-energy-barrier protophilic sites and super electron delocalization routes to propel superior ZOBs is crucial but still challenging. Here we design multiple protophilic redox-active reticular organic skeletons (ROSs) for activating better proton storage, triggered by intermolecular H-bonding and π-π stacking interactions between 2,6-diaminoanthraquinone and 2,4,6-triformylphloroglucinol nanofibrous polymer.

View Article and Find Full Text PDF

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Optimized Cerium vanadate catalytic host with simple heterostructure engineering achieving regulated polysulfide deposition for high-performance Lithium-Sulfur batteries under harsh conditions.

J Colloid Interface Sci

January 2025

Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China. Electronic address:

Meliorating the behavior deposition of lithium polysulfides (LiPS) is crucial for enhancing the electrochemical performance of sulfur cathodes, which could be implemented by the precise modulation on the catalytic host. Herein, heterostructure engineering is employed to tune up the catalytic capability of CeVO, by introducing CeO through a simple adjustment in the addition sequence of reactants. The formed CeVO/CeO heterostructure has been demonstrated to exhibit appropriate interaction strength with LiPS for accelerating the catalytic conversion process, as well as an engineered surface for inducing three dimensional (3D) LiS deposition, thereby endowing the corresponding sulfur cathodes with excellent electrochemical performance under harsh conditions.

View Article and Find Full Text PDF

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!