Repeated cell divisions induce DNA damage accumulation, which impairs stem cell function during aging. However, the general molecular mechanisms by which this occurs remain unclear. Herein, we show that the expression of protection of telomeres 1a (Pot1a), a component of shelterin, is crucial for prevention of telomeric DNA damage response (DDR) and maintenance of hematopoietic stem cell (HSC) activity during aging. We observed that HSCs express high levels of Pot1a during development, and this expression declines with aging. Knockdown of Pot1a induced an age-related phenotype, characterized by increased telomeric DDR and reduced long-term reconstitution activity. In contrast, treatment with exogenous Pot1a protein prevented telomeric DDR, which decreased stem cell activity and partially rejuvenated HSC activity. These results highlight a general, reversible mechanism by which aging compromises mammalian stem cell activity, with widespread implications for regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.11406/rinketsu.58.942DOI Listing

Publication Analysis

Top Keywords

stem cell
20
protection telomeres
8
telomeres pot1a
8
hematopoietic stem
8
dna damage
8
hsc activity
8
telomeric ddr
8
cell activity
8
cell
6
pot1a
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!