A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondqu4bki7jb246trhls6gol6836ofa252): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic Dissociation of Glycolysis and the TCA Cycle Affects Neither Normal nor Neoplastic Proliferation. | LitMetric

AI Article Synopsis

  • Rapid cell proliferation typically relies on increased glycolysis over oxidative phosphorylation (oxphos) to produce necessary metabolic substrates.
  • Researchers studied mice with inactivated pyruvate dehydrogenase complex (PDC) in liver cells to examine its role in liver regeneration and cancer development.
  • The results showed that even with significant reductions in crucial metabolic molecules, liver regeneration and cancer growth were largely unaffected, indicating that the connection between glycolysis and the TCA cycle can be disrupted without hindering cell growth.

Article Abstract

Rapidly proliferating cells increase glycolysis at the expense of oxidative phosphorylation (oxphos) to generate sufficient levels of glycolytic intermediates for use as anabolic substrates. The pyruvate dehydrogenase complex (PDC) is a critical mitochondrial enzyme that catalyzes pyruvate's conversion to acetyl coenzyme A (AcCoA), thereby connecting these two pathways in response to complex energetic, enzymatic, and metabolic cues. Here we utilized a mouse model of hepatocyte-specific PDC inactivation to determine the need for this metabolic link during normal hepatocyte regeneration and malignant transformation. In PDC "knockout" (KO) animals, the long-term regenerative potential of hepatocytes was unimpaired, and growth of aggressive experimental hepatoblastomas was only modestly slowed in the face of 80%-90% reductions in AcCoA and significant alterations in the levels of key tricarboxylic acid (TCA) cycle intermediates and amino acids. Overall, oxphos activity in KO livers and hepatoblastoma was comparable with that of control counterparts, with evidence that metabolic substrate abnormalities were compensated for by increased mitochondrial mass. These findings demonstrate that the biochemical link between glycolysis and the TCA cycle can be completely severed without affecting normal or neoplastic proliferation, even under the most demanding circumstances. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668145PMC
http://dx.doi.org/10.1158/0008-5472.CAN-17-1325DOI Listing

Publication Analysis

Top Keywords

tca cycle
12
glycolysis tca
8
normal neoplastic
8
neoplastic proliferation
8
genetic dissociation
4
dissociation glycolysis
4
cycle normal
4
proliferation rapidly
4
rapidly proliferating
4
proliferating cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!