Background/aim: While netrin-4 plays a vital role in the vascular system, the role of netrin-1 in osteoblast differentiation is not well understood. In this study we explored whether netrin-4 has functional roles in osteoblasts.

Materials And Methods: Quantitative reverse-transcriptase polymerase chain reaction (PCR), RNA interference, the generation of plasmids, transfections, measurement of alkaline phosphatase activity, a mineralization assay, a migration assay and a cell proliferation assay were performed.

Results: Netrin-4 expression was up-regulated during osteoblast differentiation and an RNA interference experiment showed that small interfering RNA used to silence netrin-4 inhibited osteoblast differentiation. Recombinant mouse netrin-4 promoted alkaline phosphatase (ALP) activity of osteoblasts and enhancement of calcium deposits. Moreover, we constructed a vector containing the netrin-4 gene on the basis of the plasmid pcDNA3.1/V5-His. Overexpression of netrin-4 enhanced differentiation of osteoblasts. Finally, recombinant mouse netrin-4 promoted cell migration of osteoblasts.

Conclusion: Netrin-4 promotes differentiation and migration of osteoblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656851PMC
http://dx.doi.org/10.21873/invivo.11132DOI Listing

Publication Analysis

Top Keywords

osteoblast differentiation
12
netrin-4
10
netrin-4 promotes
8
promotes differentiation
8
differentiation migration
8
migration osteoblasts
8
rna interference
8
alkaline phosphatase
8
recombinant mouse
8
mouse netrin-4
8

Similar Publications

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Inflammation significantly influences cellular communication in the oral environment, impacting tissue repair and regeneration. This study explores the role of small extracellular vesicles (sEVs) derived from lipopolysaccharide (LPS)-treated stem cells from the apical papilla (SCAP) in modulating macrophage polarization and osteoblast differentiation. SCAPs were treated with LPS for 24 h, and sEVs from untreated (SCAP-sEVs) and LPS-treated SCAP (LPS-SCAP-sEVs) were isolated via ultracentrifugation and characterized using transmission electron microscopy, Western blot, and Tunable Resistive Pulse Sensing.

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis.

View Article and Find Full Text PDF

Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!