Obstructive sleep apnea syndrome is a highly prevalent disease resulting in transient respiratory arrest and chronic intermittent hypoxia (cIH). cIH is associated with insulin resistance and impaired metabolic homeostasis in rodents and humans, but the exact underlying mechanisms remain unclear. In the current study, we investigated the effects of 2 weeks of cIH (1-min cycle, fraction of inspired oxygen 21-5%, 8 h/day) on whole-body insulin sensitivity and glucose tolerance in lean mice. Although food intake and body weight were reduced compared with normoxia, cIH induced systemic insulin resistance in a hypoxia-inducible factor 1-independent manner and impaired insulin signaling in liver, white adipose tissue, and skeletal muscle. Unexpectedly, cIH improved whole-body glucose tolerance independently of changes in body weight and glucose-induced insulin response. This effect was associated with elevated phosphorylation of Thr172-AMPK and Ser237-TBC1 domain family member 1 (TBC1D1) in skeletal muscle, suggesting a tissue-specific AMPK-dependent increase in TBC1D1-driven glucose uptake. Remarkably, although food intake, body weight, and systemic insulin sensitivity were still affected, the improvement in glucose tolerance by cIH was abolished in muscle-specific AMPKα1α2-deficient mice. We conclude that cIH impairs insulin sensitivity while improving whole-body glucose tolerance by promoting specific activation of the skeletal muscle AMPK pathway.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db17-0186DOI Listing

Publication Analysis

Top Keywords

glucose tolerance
20
insulin sensitivity
16
skeletal muscle
16
whole-body glucose
12
body weight
12
chronic intermittent
8
intermittent hypoxia
8
insulin
8
impairs insulin
8
muscle ampk
8

Similar Publications

Role of miR-125b-5p in modulating placental SIRT7 expression and its implications for lipid metabolism in gestational diabetes.

J Reprod Immunol

December 2024

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India. Electronic address:

Gestational diabetes is marked impaired glucose tolerance, poses various adverse outcomes including increased BMI and obesity. These outcomes results from excess lipid accumulation which is marked by elevated triglycerides. In GDM, placenta exhibits altered lipid metabolism, including reduced fatty acid oxidation and increased triglyceride accumulation.

View Article and Find Full Text PDF

Background: Gestational Diabetes Mellitus (GDM) is a common complication during pregnancy. Late diagnosis can have significant implications for both the mother and the fetus. This research aims to create an early prediction model for GDM in the first trimester of pregnancy.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!