Hippocampal theta oscillations (3-12Hz) play a prominent role in learning. It has been suggested that encoding and retrieval of memories are supported by different phases of the theta cycle. Our previous study on trace eyeblink conditioning in rabbits suggests that the timing of the conditioned stimulus (CS) in relation to theta phase affects encoding but not retrieval of the memory trace. Here, we directly tested the effects of hippocampal theta phase on memory retrieval in two experiments conducted on adult female New Zealand White rabbits. In Experiment 1, animals were trained in trace eyeblink conditioning followed by extinction, and memory retrieval was tested by presenting the CS at troughs and peaks of the theta cycle during different stages of learning. In Experiment 2, animals were trained in delay conditioning either contingent on a high level of theta or at a random neural state. Conditioning was then followed by extinction conducted either at a random state, contingent on theta trough or contingent on theta peak. Our current results indicate that the phase of theta at CS onset has no effect on the performance of the behavioral learned response at any stage of classical eyeblink conditioning or extinction. In addition, theta-contingent trial presentation does not improve learning during delay eyeblink conditioning. The results are consistent with our earlier findings and suggest that the theta phase alone is not sufficient to affect learning at the behavioral level. It seems that the retrieval of recently acquired memories and consequently performing a learned response is moderated by neural mechanisms other than hippocampal theta.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2017.09.001DOI Listing

Publication Analysis

Top Keywords

eyeblink conditioning
20
hippocampal theta
16
memory retrieval
12
trace eyeblink
12
theta phase
12
conditioning extinction
12
theta
11
encoding retrieval
8
theta cycle
8
experiment animals
8

Similar Publications

Introduction: Physical exercise has repeatedly been reported to have advantageous effects on brain functions, including learning and memory formation. However, objective tools to measure such effects are often lacking. Eyeblink conditioning is a well-characterized method for studying the neural basis of associative learning.

View Article and Find Full Text PDF

Neuronal dynamics of cerebellum and medial prefrontal cortex in adaptive motor timing.

Nat Commun

January 2025

Department of Neuroscience, Erasmus MC, Westzeedijk 353, 3015 AA, Rotterdam, the Netherlands.

Precise temporal control of sensorimotor coordination and adaptation is a fundamental basis of animal behavior. How different brain regions are involved in regulating the flexible temporal adaptation remains elusive. Here, we investigated the neuronal dynamics of the cerebellar interposed nucleus (IpN) and the medial prefrontal cortex (mPFC) neurons during temporal adaptation between delay eyeblink conditioning (DEC) and trace eyeblink conditioning (TEC).

View Article and Find Full Text PDF

Associative learning via eyeblink conditioning differs by age from infancy to adulthood.

Commun Psychol

December 2024

Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.

Associative learning is a key feature of adaptive behaviour and mental health, enabling individuals to adjust their actions in anticipation of future events. Comprehensive documentation of this essential component of human cognitive development throughout different developmental periods is needed. Here, we investigated age-related changes in associative learning in key developmental stages, including infancy, childhood, adolescence, and adulthood.

View Article and Find Full Text PDF

The sensory input, not the motor output, defines blink reflex conditioning.

Clin Neurophysiol

December 2024

Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria. Electronic address:

Objective: Blink reflexes following supraorbital nerve (SON) stimulation are typically modulated by conditioning stimuli (CS) to the index finger (D2) (low-intensity, prepulse inhibition paradigm) or SON (same intensity, paired-pulse paradigm). We aimed to disentangle whether CS-intensity or CS-induced motor responses define blink reflex modulation.

Methods: In 35 subjects, test SON stimuli (8 times sensory threshold, 8 × ST) were applied either alone or following CS.

View Article and Find Full Text PDF

As clinical psychological science and biological psychiatry push to assess, model, and integrate heterogeneity and individual differences, approaches leveraging computational modeling, translational methods, and dimensional approaches to psychopathology are increasingly useful in establishing brain-behavior relationships. The field is ultimately interested in complex human behavior, and disruptions in such behaviors can arise through many different pathways, leading to heterogeneity in etiology for seemingly similar presentations. Parsing this complexity may be enhanced using "simple" tasks-which we define as those assaying elemental processes that are the building blocks to complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!