Taurine restores the exploratory behavior following alcohol withdrawal and decreases BDNF mRNA expression in the frontal cortex of chronic alcohol-treated rats.

Pharmacol Biochem Behav

Programa de Pós Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Laboratório de Álcool e Tabaco (LAT), Universidade Federal do Rio Grande do Sul - UFRGS, Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós Graduação de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Sarmento Leite, 245, 90050-170 Porto Alegre, RS, Brazil.

Published: October 2017

Alcohol use disorder is an alarming health problem, and the withdrawal symptoms increase the risk of relapse. We have hypothesized that taurine, a multitarget substance acting as a gamma-aminobutyric acid A receptor (GABAR) positive modulator and a partial inhibitor of N-methyl-d-aspartate (NMDA) glutamate receptors, may reduce the withdrawal symptoms or modify behaviors when combined with alcohol. Therefore, we investigated the effects of taurine on behavior in the open field test (OFT), the GABAR α subunit and BDNF mRNA expression in the frontal cortex of rats after chronic alcohol treatment or upon withdrawal. Rats received alcohol 2g/kg (alcohol and withdrawal groups) or water (control group) twice daily by oral gavage for 28days. On day 29, the withdrawal rats received water instead of alcohol, and all groups were reallocated to receive 100mg/kg taurine or vehicle intraperitoneally, once a day for 5days. On day 33, the rats were exposed to OFT; 18h later, they were euthanized, and the frontal cortex was dissected for GABAR α subunit detection and BDNF mRNA expression determination by real-time quantitative PCR. Taurine administration restored rearing behavior to the control levels in the withdrawal rats. Taurine also showed anxiolytic-like effects in control rats and did not change the behaviors in the chronic alcohol group. Chronic alcohol treatment or withdrawal did not change the GABAR α subunit or BDNF mRNA expression in the frontal cortex, but taurine decreased the α subunit level in control rats and to the BDNF levels in the alcohol rat group. We conclude that taurine restored exploratory behavior after alcohol withdrawal but that this effect was not related to the GABAR α subunit or BDNF mRNA expression in the frontal cortex of the rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2017.09.001DOI Listing

Publication Analysis

Top Keywords

bdnf mrna
20
mrna expression
20
frontal cortex
20
expression frontal
16
gabar subunit
16
alcohol withdrawal
12
subunit bdnf
12
chronic alcohol
12
withdrawal rats
12
alcohol
11

Similar Publications

Impact of Exercise on Tramadol-Conditioned Place Preference.

Brain Sci

January 2025

Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan.

Background: Tramadol (TRA) is an opioid that is used to manage moderate to severe pain. Long-term use of TRA can lead to the development of opioid use disorder.

Objectives: This study investigates the role of forced exercise in reducing TRA-seeking behavior.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder that occurs after an individual has witnessed or experienced a major traumatic event. Emotional contagion seems to play an important role in witnessing trauma, highlighting the importance of understanding the neurobiological consequences of psychological or emotional stress and its impact on the individual's mental health. Therefore, understanding the relationship between emotional contagion and PTSD susceptibility and the abnormal neurobiological and behavioral changes behind it could help find effective molecular treatment targets.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Postoperative delirium (POD), an acute cognitive dysfunction linked to morbidity and mortality, is characterized by memory impairments and disturbances in consciousness, particularly in patients aged 65 and older. Neuroinflammation and NAD+ imbalance are key mechanisms behind POD, leading to synaptic and cognitive deterioration. However, how surgery contributes to POD and neuroinflammation remains unclear, and effective treatments are lacking.

View Article and Find Full Text PDF

Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!