Adenosine A1 receptor potentiated glycinergic transmission in spinal cord dorsal horn of rats after peripheral inflammation.

Neuropharmacology

Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China. Electronic address:

Published: November 2017

Adenosine is present at the extracellular space within spinal cord dorsal horn and engaged in the processing of nociceptive sensory signals. Systemic or spinal administration of exogenous adenosine produces a potent analgesia against pathological pain. Here we found that inhibitory glycinergic neurotransmission was an important target for adenosine regulation. In spinal cord slices from intact rats, adenosine increased the inhibitory postsynaptic currents mediated by glycine receptors (GlyRs). In spinal slices from Complete Freund's Adjuvant-injected rats, adenosine potentiated glycinergic transmission to a more degree than in control rats. This synaptic potentiation was dependent on the activation of adenosine A1 receptor (A1R), and attributed to the modification of postsynaptic GlyRs function. The Gi protein-coupled A1R typically signals through Gαi/cAMP-dependent protein kinase (PKA) and Gβγ pathways. We found that blockade of either Gαi/PKA or Gβγ signaling attenuated the ability of adenosine to increase glycinergic synaptic responses in inflamed rats. To identify which GlyRs subunit was subjected to A1R regulation, we recorded glycine-evoked whole-cell currents in HEK293T cells co-transfected with A1R and distinct GlyRs subunit. We found that α1, the most abundant functional GlyRs subunit in adult spinal cord, was insensitive to A1R activation. However, when GlyRs α3 subunit or α1 subunit, a longer α1 isoform, was co-expressed with A1R, adenosine caused a significant increase of glycinergic currents. Inhibition of PKA and Gβγ abolished the stimulatory effects of A1R on α3 and α1, respectively. These data suggested that A1R might potentiate glycinergic transmission through Gαi/PKA/α3 and Gβγ/α1 pathways in inflamed rat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2017.09.001DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
glycinergic transmission
12
glyrs subunit
12
adenosine
9
adenosine receptor
8
potentiated glycinergic
8
cord dorsal
8
dorsal horn
8
rats adenosine
8
a1r
8

Similar Publications

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

Deer antler blastema progenitor cells (ABPCs) are promising for regenerative medicine due to their role in annual antler regeneration, the only case of complete organ regeneration in mammals. ABPC-derived signals show great potential for promoting regeneration in tissues with limited natural regenerative ability. Our findings demonstrate the capability of extracellular vesicles from ABPCs (EVs) to repair spinal cord injury (SCI), a condition with low regenerative capacity.

View Article and Find Full Text PDF

Motor dysfunction and muscle atrophy are typical symptoms of patients with spinal cord injury (SCI). Exercise training is a conventional physical therapy after SCI, but exercise intervention alone may have limited efficacy in reducing secondary injury and promoting nerve regeneration and functional remodeling. Our previous research found that intramedullary pressure after SCI is one of the key factors affecting functional prognosis.

View Article and Find Full Text PDF

Recruitment input-output curves of transspinal evoked potentials that represent the net output of spinal neuronal networks during which cortical, spinal and peripheral inputs are integrated as well as motor evoked potentials and H-reflexes are used extensively in research as neurophysiological biomarkers to establish physiological or pathological motor behavior and post-treatment recovery. A comparison between different sigmoidal models to fit the transspinal evoked potentials recruitment curve and estimate the parameters of physiological importance has not been performed. This study sought to address this gap by fitting eight sigmoidal models (Boltzmann, Hill, Log-Logistic, Log-Normal, Weibull-1, Weibull-2, Gompertz, Extreme Value Function) to the transspinal evoked potentials recruitment curves of soleus and tibialis anterior recorded under four different cathodal stimulation settings.

View Article and Find Full Text PDF

Purpose Of Review: The use of stem cell therapy is a rapidly evolving and progressing frontier of science that has been used to treat illnesses such as malignancies, immunodeficiencies, and metabolic syndromes. This review aims to give an overview of the use of stem cell therapy in the treatment of pain caused by diabetic neuropathy, osteoarthritis, and other spinal cord pathologies.

Recent Findings: Pain is defined as a generalized or localized feeling of distress related to a physical or emotional stimulus and can be caused by a multitude of pathologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!