The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas.

Oncotarget

Translational Cell Biology and Neurooncology laboratory at the Department of Neurosurgery, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.

Published: August 2017

Malignant gliomas are devastating neoplasia with limited curative treatment options. Temozolomide (TMZ, Temcat, Temodal or Temodar) is a first-line treatment for malignant gliomas but the development of drug resistance remains a major concern. Activating transcription factor 4 (ATF4) is a critical oxido-metabolic regulator in gliomas, and its role in the pathogenesis of TMZ-resistance remains elusive. We investigated the effect of TMZ on human glioma cells under conditions of enhanced ATF4 expression (ATF4) and ATF4 knock down (ATF4). We monitored cell survival, ATF4 mRNA expression of ATF4 and xCT (SLC7a11) regulation within human gliomas. TMZ treatment induces a transcriptional response with elevated expression of ATF4, xCT and Nrf2, as a sign of ER stress and toxic cell damage response. ATF4 overexpression (ATF4) fosters TMZ resistance in human gliomas and inhibits TMZ-induced autophagy. Conversely, ATF4 suppression by small interfering RNAs (ATF4) leads to increased TMZ susceptibility and autophagy in comparison to wild type gliomas. ATF4 gliomas show reduced cell cycle shift and apoptotic cell death, whereas ATF4 gliomas reveal higher susceptibility towards cell cycle rearrangements. Hence, the migration capacity of ATF4 glioma cells is almost not affected by TMZ treatment. In contrast, ATF4 gliomas show a migratory stop following TMZ application. Mechanistically, xCT elevation is a consequence of ATF4 activation and increased levels of xCT amplifies ATF4-induced TMZ resistance. Our data show that ATF4 operates as a chemo-resistance gene in gliomas, and the tumor promoting function of ATF4 is mainly determined by its transcriptional target xCT. Therefore, therapeutic inactivation of ATF4 can be a promising strategy to overcome chemo-resistance and promote drug efficacy in human gliomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584239PMC
http://dx.doi.org/10.18632/oncotarget.17737DOI Listing

Publication Analysis

Top Keywords

atf4
21
human gliomas
16
gliomas
12
expression atf4
12
atf4 gliomas
12
malignant gliomas
8
tmz
8
glioma cells
8
atf4 xct
8
tmz treatment
8

Similar Publications

Protein N-glycosylation is a cotranslational modification that takes place in the endoplasmic reticulum (ER). Disruption of this process can result in accumulation of misfolded proteins, known as ER stress. In response, the unfolded protein response (UPR) restores proteostasis or responds by controlling cellular fate, including increased expression of activating transcription factor 4 (ATF4) that can lead to apoptosis.

View Article and Find Full Text PDF

Enhanced membrane protein production in HEK293T cells via gene knockout: A CRISPR-Cas9 mediated approach.

Biomol Biomed

January 2025

Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.

View Article and Find Full Text PDF

TFII-I/GTF2I regulates globin gene expression and stress response in erythroid cells.

J Biol Chem

January 2025

Department of Biochemistry and Molecular Biology, College of Medicine, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida 32610. Electronic address:

Transcription factor TFII-I/GTF2I is ubiquitously expressed and has been shown to play a role in the differentiation of hematopoietic cells and in the response to various cellular stressors. We previously demonstrated that TFII-I acts as a repressor of adult β-globin gene transcription and positively regulates expression of stress response proteins, including ATF3. Here we analyzed the function of TFII-I in TF-1 cells during erythroid differentiation and in response to cellular stress, including unfolded protein response, hypoxia, and oxidative stress.

View Article and Find Full Text PDF

Toxoplasma gondii (T. gondii) causes obvious reproductive toxicity in male by inducing inflammation and apoptosis in testicular tissue. Ginseng polysaccharide (GP) is an active compound in ginseng, known for its remarkable anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!