Xk-related protein 8 (Xkr8) is a scramblase and responsible for phosphatidylserine (PS) exposure on the cell surface in a caspase-dependent manner. Although PS exposure is found to be important for myotube formation during myoblast differentiation, the role of Xkr8 during myogenesis has not been elucidated. Here we show that Xkr8 contributes to myoblast differentiation. Xkr8 overexpression induced the formation of large myotubes during early differentiation, but this phenotype was not related to caspase-dependent cleavage of Xkr8. Furthermore, forced Xkr8 expression accelerated myoblast differentiation and conferred cell-death resistance after the induction of differentiation. Consistent with these results, Xkr8-knocked-down myoblasts exhibited impaired differentiation and more apoptotic cells during differentiation, implying the involvements of Xkr8 in the survival and proliferation of myoblasts. Taken together, the study shows Xkr8 influences myogenesis by acting as a positive regulator of terminal differentiation and myoblast survival.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14261DOI Listing

Publication Analysis

Top Keywords

myoblast differentiation
16
differentiation
9
xk-related protein
8
xkr8
8
myoblast
5
protein regulates
4
regulates myoblast
4
differentiation survival
4
survival xk-related
4
protein xkr8
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!