Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.2009 | DOI Listing |
Sensors (Basel)
December 2024
Rangeland Service, Ministry of Agriculture and Food Security, P.O. Box 30, Rishon LeZion 5025001, Israel.
Acoustic monitoring facilitates the detailed study of herbivore grazing by generating a timeline of sound bursts associated with jaw movements (JMs) that perform bite or chew actions. The unclassified stream of JM events was used here in an observational study to explore the notion of "grazing time". Working with shepherded goat herds in a wooded landscape, a horn-based acoustic sensor with a vibration-type microphone was deployed on a volunteer animal along each of 12 foraging routes.
View Article and Find Full Text PDFWater Res
January 2025
Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea. Electronic address:
Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production.
View Article and Find Full Text PDFMicrob Genom
January 2025
mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing . This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing found in the environment and their link with human clinical isolates.
View Article and Find Full Text PDFFreshwater waterways, and species that depend on them, are threatened by urbanisation and the consequences of the urban stream syndrome. In south-east Queensland, Australia, little is known about the impacts of the urban stream syndrome on the platypus (), meaning that populations cannot be adequately managed by conservation practitioners. The aim of this study was to determine how habitat and environmental variables, related to the urban stream syndrome, influenced platypus distribution across this region.
View Article and Find Full Text PDFEcotoxicology
January 2025
Laboratory of Ecology and Conservation, Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta, Indonesia.
Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!