A novel photo-responsive anionic surfactant with a dimethylamino-substituted azobenzene located at the end of the hydrophobic chain, 6-(4-dimethylaminoazobenzene-4'-oxy)hexanoate sodium (DAH), has been designed. Through the host-guest interaction in aqueous solution, the trans-DAH could be spontaneously included by using two native α-cyclodextrin (α-CD) molecules. The formed hydrophilic inclusion complex (DAH@2α-CD), however, could act as a gelator to induce the formation of a supramolecular hydrogel, which is driven mainly by hydrogen bonds between neighboring α-CDs and also between the carboxylate in DAH and water. Compared with common hydrogels that consist of networks with fibres or discrete polymer chains, the hydrogel formed by DAH@2α-CD was composed of periodic lamellar structures possessing good shear-thinning behavior and much swollen water layers. The more interesting point for such a hydrogel was its visible-light responsibility for gel-sol reversible phase transition. This originated from the introduction of an electron-donating group (dimethylamino) to azobenzene, which noticeably red-shifted the responsive wavelength for its trans-to-cis isomerization. It was also worth noting that the host-guest interaction between azobenzene in DAH and α-CD significantly improved the photo-transition efficiency from trans to cis forms of azobenzene, which played a critical role in the visible-light responsibility of the hydrogel. This unique visible-light-responsive behavior combined with the inherent thermo-responsive property from α-CD should make the prepared hydrogel find more potential applications in biomedical systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7sm01528c | DOI Listing |
J Mater Chem B
January 2025
Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT).
View Article and Find Full Text PDFChemistry
December 2024
Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, 400042, China.
In this study, a supramolecular fluorescent material was constructed by using double-cavity twisted cucurbit[14]uril (tQ[14]) and positively charged Astrazon Pink FG (APFG) based on the non-covalent host-guest interaction for the first time. The thermodynamic parameters of the APFG@tQ[14] in aqueous solution were determined by isothermal titration calorimetry (ITC), the results indicated that the spontaneous assembly of APFG@tQ[14] is mainly driven by enthalpy. The intramolecular charge transfer (ICT) effect induced the APFG@tQ[14] probe to emit a strong orange-red fluorescence.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry, 135 Xingang West, 510275, Guangzhou, CHINA.
Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular frameworks hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme's conformation, leading to biocatalytic rate enhancement, or imparting enzyme with non-native biocatalytic functions including substrate-selectivity and new activity.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!