This study was aimed to investigate the protective effect and mechanism of β-asarone on PC12 cells injury induced byAβ₁₋₄₂ activated astrocytes, and provide experimental basis for β-asarone application in the prevention and control of Alzheimer's disease (AD). Firstly, RA-h and PC12 cells were co-cultured in the special transwell chamber, and the Real time cell analysis (RTCA) system was used to real-time observe its effect on PC12 cells survival rate in the co-culture system after astrocytes injury induced by Aβ₁₋₄₂. The best intervention time of β-asarone was selected according to the survival curve and parameters generated automatically. β-asarone with different concentrations was used for intervention on astrocytes, then the changes of PC12 cells survival rate in the co-culture system were observed. Secondly, MTT assay was used to detect the effect of Aβ₁₋₄₂ on PC12 cells survival rate as well as the intervention effect of β-asarone, and verify the testing results of RTCA. The levels of IL-1β, TNF-α and BDNF in culture media of the lower chamber were detected by ELISA. The NF-κB activity and phosphorylation levels of ERK, p38 and JNK were detected by Western blot. Results showed that β-asarone (55.5 mg•L⁻¹) could significantly slowdown the decline of PC12 cells survival rate caused by Aβ₁₋₄₂-induced RA-h activation (P<0.01), significantly reduce the levels of IL-1β, TNF-α and the phosphorylation levels of ERK, p38 and JNK in culture media of the lower chamber (P<0.01). β-asarone(166.7 mg•L⁻¹) could promote the release of BDNF in culture media of the lower chamber(P<0.05). These results indicated that Aβ₁₋₄₂ could induce RA-h activation and its release of IL-1β, TNF-α and other inflammatory factors to aggravate the PC12 cells injury; β-asarone could reduce the levels of IL-1β, TNF-α, promote the release of BDNF, and inhibit the NF-κB activity as well as phosphorylation levels of ERK, p38 and JNK protein in PC12 cells.

Download full-text PDF

Source
http://dx.doi.org/10.4268/cjcmm20160720DOI Listing

Publication Analysis

Top Keywords

pc12 cells
28
cells survival
16
survival rate
16
injury induced
12
β-asarone pc12
8
cells injury
8
induced aβ₁₋₄₂
8
rate co-culture
8
co-culture system
8
pc12
7

Similar Publications

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.

View Article and Find Full Text PDF

Therapeutic Potential of Shilong Qingxue Granule and Its Extract Against Glutamate Induced Neural Injury: Insights from In Vivo and In Vitro Models.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:

Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.

Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.

Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.

View Article and Find Full Text PDF

The Role of GSK3β Signaling Mediated Lysosomal Biosynthesis Dysregulation in Fluoride-Induced Neurological Impairment.

Food Chem Toxicol

January 2025

Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China. Electronic address:

Neurological dysfunction induced by fluoride is still one of major concern worldwide, yet the underlying mechanisms remain elusive. To explore whether fluoride disrupts lysosomal biosynthesis via the GSK3β signaling, leading to neurological damage, both in vivo rat models and in vitro PC12 cell models were conducted. Subsequent findings revealed reduced spatial learning and memory abilities, decreased hippocampal neurons, and disrupted neuronal arrangement in NaF-treated rats.

View Article and Find Full Text PDF

In situ biosensing for cell viability and drug evaluation in 3D extracellular matrix cultures: Applications in cytoprotection of oxidative stress injury.

Talanta

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!