Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-017-0956-9DOI Listing

Publication Analysis

Top Keywords

capillary number
16
adhesion
12
shear flow
12
membrane deformability
8
bond formation/dissociation
8
formation/dissociation rates
8
rates adhesion
8
adhesion behavior
8
number bond
8
rolling adhesion
8

Similar Publications

Screening and identification of vascular endothelial cell targeting peptide in gastric cancer through novel integrated in vitro and in vivo strategy.

BMC Cancer

December 2024

Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, P.R. China.

Purpose: Antiangiogenesis therapy has become a hot field in cancer research. Given that tumor blood vessels often express specific markers related to angiogenesis, the study of these heterogeneous molecules in different tumor vessels holds promise for advancing anti-angiogenic therapy. Previously using phage display technology, we identified a targeting peptide named GX1 homing to gastric cancer vessels for the first time.

View Article and Find Full Text PDF

Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.

View Article and Find Full Text PDF

Comparison of genotyping assays for detection of targeted CRISPR/Cas mutagenesis in highly polyploid sugarcane.

Front Genome Ed

December 2024

Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS-Institute of Food and Agricultural Science, Gainesville, FL, United States.

Sugarcane ( spp.) is an important biofuel feedstock and a leading source of global table sugar. hybrid cultivars are highly polyploid (2n = 100-130), containing large numbers of functionally redundant hom(e)ologs in their genomes.

View Article and Find Full Text PDF

Use of nailfold capillaroscopy for the assessment of patients undergoing digit replantation and revascularization.

Jt Dis Relat Surg

January 2025

İnönü Üniversitesi Tıp Fakültesi Turgut Özal Tıp Merkezi, Ortopedi ve Travmatoloji Anabilim Dalı, 44280 Malatya, Türkiye.

Objectives: In this study, we aimed to evaluate microvascular changes using nailfold capillaroscopy in patients who underwent digit replantation and revascularization.

Patients And Methods: A total of 46 patients (34 males, 12 females; mean age: 45.8±17.

View Article and Find Full Text PDF

Vascular Basement Membrane Fragmentation in Keloids and the Expression of Key Basement Membrane Component Genes.

Plast Reconstr Surg Glob Open

December 2024

From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.

Background: Keloids are growing scars that arise from injury to the reticular dermis and subsequent chronic local inflammation. The latter may be promoted by vascular hyperpermeability, which permits the ingress of chronic inflammatory cells/factors. Cutaneous capillaries consist of endothelial cells that generate, and are anchored by, a vascular basement membrane (VBM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!