Effects of Arsenic Compounds on Microminerals Content and Antioxidant Enzyme Activities in Rat Liver.

Biol Trace Elem Res

Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.

Published: June 2018

Interactions of arsenic with essential trace elements may result in disturbances on body homeostasis. In the present study, we aimed to investigate the effects of different arsenic compounds on micromineral content and antioxidant enzyme activities in rat liver. Male Wistar rats were randomly divided into five groups and exposed to sodium arsenite and sodium arsenate at 0.01 and 10 mg/L for 8 weeks in drinking water. The concentration of arsenic increased in the liver of all arsenic-exposed animals. The proportion of zinc and copper increased in animals exposed to 0.01 mg/L sodium arsenite. In addition, these animals presented a reduction in magnesium and sodium content. Superoxide dismutase activity decreased mainly in arsenite-exposed animals, whereas catalase activity decreased in animals exposed to 10 mg/L sodium arsenate. Further, exposure to sodium arsenate at 10 mg/L altered copper and magnesium content in the liver, and reduced total protein levels. Overall, both arsenic compounds altered the liver histology, with reduction in the proportion of cytoplasm and hepatocyte, and increased the percentage of sinusoidal capillaries and macrophages. In conclusion, our findings showed that oral exposure to arsenic compounds disturbs the trace elements balance in the liver, especially at low concentration, altering enzymatic and stereological parameters. We concluded that despite the increase in trace elements content, the antioxidant enzyme activities were downregulated and did not prevent morphological alterations in the liver of animals exposed to both arsenic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-017-1147-3DOI Listing

Publication Analysis

Top Keywords

arsenic compounds
20
content antioxidant
12
antioxidant enzyme
12
enzyme activities
12
trace elements
12
sodium arsenate
12
animals exposed
12
effects arsenic
8
activities rat
8
rat liver
8

Similar Publications

Acute promyelocytic leukaemia (APL) is a highly lethal haematological malignancy. It is rare in pregnancy and may be fatal if not managed promptly and appropriately. A woman in her 20s presented with high-grade fever at 16 weeks of her third pregnancy.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

[Microorganism-mediated arsenic reduction and its environmental effects].

Sheng Wu Gong Cheng Xue Bao

December 2024

School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.

Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked.

View Article and Find Full Text PDF

Phenylarsonic acid (PAA) compounds, widely used in animal husbandry, pose a considerable environmental threat owing to their potential transformation into toxic inorganic arsenic species. To efficiently decontaminate PAA and adsorb secondary As(V), a hybrid CuFeO-modified carbon nanotube (CuFeO-CNT) filter was developed in this study. The hybrid CuFeO-CNT filter functioned as an effective catalyst, convective filtration medium, electrode, and adsorbent.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is the most common and prevalent subtype of lung cancer and continues to be one of the leading causes of cancer-related deaths worldwide. Despite various treatment options, a majority of NSCLC patients continue to experience disease progression and associated side effects, which are largely attributed to drug resistance, indicating the need for alternative strategies to combat this deadly disease. Among various applicable alternative approaches, repurposed drugs such as arsenic compounds have been shown to exert anticarcinogenic properties against NSCLC and possess the ability to overcome drug resistance mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!