[Purpose] To investigate the effect of pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia. [Subjects and Methods] Sixty male patients aged 55-65 years with benign prostatic hyperplasia were invited to participate in this study. Patients were randomly assigned to Group A (n=20; patients who received pulsed electromagnetic field in addition to pelvic floor and aerobic exercises), Group B (n=20; patients who received pulsed electromagnetic field), and Group C (n=20; patients who received placebo electromagnetic field). The assessments included post-void residual urine, urine flow rate, prostate specific antigen, white blood cells count, and International Prostate Symptom Score were weighed, before and after a 4-week intervention. [Results] There were significant differences in Group A and B in all parameters. Group C showed non-significant differences in all measured variables except for International Prostate Symptom Score. Among groups, all parameters showed highly significant differences in favor of Group A. There were non-significant differences between Group A and B and significant difference between Groups A and C and between Groups B and C. [Conclusion] The present study demonstrated that electromagnetic field had a significant impact on the treatment of benign prostatic hyperplasia. Accordingly, electromagnetic field can be utilized alone or in combination with other physiotherapy modalities. Moreover, clinicians should have the capacity to perceive the advantages accomplished using extra treatment alternatives. Electromagnetic field is a safe, noninvasive method and can be used for the treatment of benign prostatic hyperplasia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574357 | PMC |
http://dx.doi.org/10.1589/jpts.29.1305 | DOI Listing |
Magn Reson Imaging
January 2025
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
Background: Inductively coupled wireless coils are increasingly used in MRI due to their cost-effectiveness and simplicity, eliminating the need for expensive components like preamplifiers, baluns, coil plugs, and coil ID circuits. Existing tools for predicting component values and electromagnetic (EM) fields are primarily designed for cylindrical volume coils, making them inadequate for irregular volume-type wireless coils.
Purpose: The aim of this study is to introduce and validate a novel magnetic (H-) field probe-based co-simulation method to accurately predict capacitance values and EM fields for irregular volume-type wireless coils, thereby addressing the limitations of current prediction tools.
Electromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.
View Article and Find Full Text PDFPNAS Nexus
January 2025
The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.
The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.
View Article and Find Full Text PDFAppl Phys Lett
January 2025
Department of Biomedical Engineering, University of California, Irvine, California 92617, USA.
Electroacoustic imaging is an imaging modality used to detect electric field energy distribution during electroporation, offering valuable guidance for clinical procedures, particularly in deep tissues. Traditionally, single-element piezoelectric transducers or arrays have been employed for this purpose. However, these piezoelectric sensors are sensitive to electromagnetic interference and require physical contact with the sample through a coupling medium, raising concerns for both clinical and preclinical applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.
Faraday cages are extensively utilized in plasma-based etching and deposition processes to regulate ion behavior due to their shielding effect on electromagnetic fields. Herein, vertical silicon nanopillar arrays are fabricated through SF and O reactive ion etching. By incorporation of a Faraday cage in the plasma equipment, the impact of the Faraday cage on the morphology of the silicon nanopillars is analyzed; the Faraday cage blocks out the sputtered particles and eradicates the formation of silicon nanograss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!