We demonstrate an electrically pumped, single-mode, large area, edge-emitting InGaAsP/InP two-dimensional photonic crystal (PC) Bragg laser with triangular lattice. The laser operates in the single transverse and longitudinal modes with a single lobe, near-diffraction-limited far field. We compare the performance of the triangular-lattice PC Bragg laser with the rectangular-lattice PC Bragg laser fabricated from the same wafer and find that their performances are comparable. Then, we combine two single triangular-lattice PC Bragg lasers that tilt to opposite directions by taking advantage of the symmetry of the single emitter cavity mode. The measurement results show that the combined PC Bragg lasers provide the near-diffraction-limited output beam, and the single wavelength operation is also maintained in the coherently combined broad-area PC Bragg lasers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5587764 | PMC |
http://dx.doi.org/10.1038/s41598-017-10896-9 | DOI Listing |
The fiber Bragg grating (FBG) is fabricated by the femtosecond laser writing technique with a plane-by-plane (Pl-by-Pl) method in the double-cladding fiber (DCF). The refractive index modified (RIM) region formed by this method is 12 μm × 8 μm in size. Due to the Pl-by-Pl method, high-order Bragg resonances with reflectance greater than 99% can be achieved.
View Article and Find Full Text PDFOptical properties of InGaN/GaN red quantum well(QW) and their microcavities were studied and compared under optical pumping. Incidence of the excitation laser from the p-side was employed for both structures in order to acquire better emission characteristics. The QW structure was grown on sapphire substrate by metalorganic vapor-phase epitaxy(MOVPE) with a blue pre-layer QW.
View Article and Find Full Text PDFThe rigid Fabry-Pérot (F-P) cavity has emerged as the preferred core sensing component for optical pressure, vibration, and acoustic sensing in harsh environments, owing to its high reliability and structural stability. However, due to the inadequate temperature resistance of the optical dielectric film, maintaining a high level of precision in the rigid F-P cavity at elevated temperatures proves to be challenging. Volume Bragg grating (VBG) is a three-dimensional optical element modified by a femtosecond laser within a transparent glass medium to create a periodic refractive index distribution.
View Article and Find Full Text PDFWe report an InP-based MMI combiner integrated array of 4 channel directly modulated 1.3 µm distributed feedback (DFB) lasers. Each laser channel in the array has an active DFB section and a passive distributed Bragg reflector (DBR) section.
View Article and Find Full Text PDFA high-sensitivity hot-wire anemometer is proposed for use with a cobalt-doped fiber (CDF) based long-period grating (LPG) heated optically by a 1480 nm laser. The CDF-LPG absorbs laser power and generates heat inherently, thereby eliminating the need for both metal coating and mode coupling devices that are usually required in optical fiber grating anemometers. The dip wavelength of the CDF-LPG shifts with airflow velocity due to the cooling effect of the airflow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!