A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the Effect of Optical Signal Multipath. | LitMetric

Here, we propose a model to determine the effect of multipath in indoor environments when the shape and characteristics of the environment are known. The main paper goal is to model the multipath signal formation to solve, as much as possible, the negative effects in light communications, as well as the indoor positioning errors due to this phenomenon when using optical signals. The methodology followed was: analyze the multipath phenomenon, establish a theoretical approach and propose different models to characterize the behavior of the channel, emitter and receiver. The channel impulse response and received signal strength are obtained from different proposed algorithms. We also propose steps for implementing a numerical procedure to calculate the effects of these multipaths using information that characterizes the environment, transmitter and receiver and their corresponding positions. In addition, the results of an empirical test in a controlled environment are compared with those obtained using the model, in order to validate the latter. The results may largely vary with respect to the cell size used to discretize the environment. We have concluded that a cell size whose side is 20-times smaller than the minimum distance between emitter and receiver (i.e., 10 cm × 10 cm for a 2-m distance) provides almost identical results between the empirical tests and the proposed model, with an affordable computational load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621174PMC
http://dx.doi.org/10.3390/s17092038DOI Listing

Publication Analysis

Top Keywords

emitter receiver
8
cell size
8
modeling optical
4
optical signal
4
multipath
4
signal multipath
4
multipath propose
4
model
4
propose model
4
model determine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!