Human endogenous retroviruses (HERVs), remnants of ancestral viral genomic insertions, are known to represent 8% of the human genome and are associated with several pathologies. In particular, the envelope protein of HERV-W family (HERV-W-Env) has been involved in multiple sclerosis pathogenesis. Investigations to detect HERV-W-Env in a few other autoimmune diseases were negative, except in type-1 diabetes (T1D). In patients suffering from T1D, HERV-W-Env protein was detected in 70% of sera, and its corresponding RNA was detected in 57% of peripheral blood mononuclear cells. While studies on human Langerhans islets evidenced the inhibition of insulin secretion by HERV-W-Env, this endogenous protein was found to be expressed by acinar cells in 75% of human T1D pancreata. An extensive immunohistological analysis further revealed a significant correlation between HERV-W-Env expression and macrophage infiltrates in the exocrine part of human pancreata. Such findings were corroborated by in vivo studies on transgenic mice expressing HERV-W-env gene, which displayed hyperglycemia and decreased levels of insulin, along with immune cell infiltrates in their pancreas. Altogether, these results strongly suggest an involvement of HERV-W-Env in T1D pathogenesis. They also provide potentially novel therapeutic perspectives, since unveiling a pathogenic target in T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621895 | PMC |
http://dx.doi.org/10.1172/jci.insight.94387 | DOI Listing |
Nutr Diabetes
December 2024
Department of International Medical, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
Background: Diabetes mellitus (DM) and arthritis are prevalent conditions worldwide. The intricate relationship between these two conditions, especially in the context of various subtypes of arthritis, remains a topic of interest.
Objective: To investigate the relationship between diabetes and arthritis, with a focus on Rheumatoid Arthritis (RA), using data from the National Health and Nutrition Examination Survey (NHANES) and Mendelian Randomization (MR) analysis.
J Biomed Mater Res B Appl Biomater
January 2025
Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
IntroductionProlonged hyperglycemia in diabetic patients often impairs wound healing, leading to chronic infections and complications. This study aimed to evaluate the potential of fresh Tilapia fish skin as a treatment to enhance wound healing in diabetic rats. MethodsThirty-nine healthy adult albino rats, weighing between 150 and 200 g, were divided into three groups: non-diabetic rats with untreated wounds [C-], diabetic rats with untreated wounds [C+], and diabetic rats treated with fresh Tilapia skin [TT].
View Article and Find Full Text PDFJ Pediatr Clin Pract
December 2024
Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Front Endocrinol (Lausanne)
December 2024
Department of Pediatric Diabetes and Endocrinology, Clinique Pédiatrique, Centre Hospitalier, Luxembourg, Luxembourg.
Aims: To compare impact of pump treatment and continuous glucose monitoring (CGM) with predictive low glucose suspend (SmartGuard) or user initiated CGM (iscCGM) on sleep and hypoglycemia fear in children with type 1 Diabetes and parents.
Methods: Secondary analysis of data from 5 weeks pump treatment with iscCGM (A) or SmartGuard (B) open label, single center, randomized cross-over study was performed. At baseline and end of treatment arms, sleep and fear of hypoglycemia were evaluated using ActiGraph and questionnaires.
Front Endocrinol (Lausanne)
December 2024
Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany.
Introduction: Diabetes mellitus (DM) is a chronic metabolic disorder that increases fragility fracture risk. Conventional DXA-based areal bone mineral density (aBMD) assessments often underestimate this risk. Cortical Backscatter (CortBS) ultrasound, a radiation-free technique, non-invasively analyzes cortical bone's viscoelastic and microstructural properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!