We developed an in vitro model system where induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional human hepatic organoids (HOs) through stages that resemble human liver during its embryonic development. The HOs consist of hepatocytes, and cholangiocytes, which are organized into epithelia that surround the lumina of bile duct-like structures. The organoids provide a potentially new model for liver regenerative processes, and were used to characterize the effect of different JAG1 mutations that cause: (a) Alagille syndrome (ALGS), a genetic disorder where NOTCH signaling pathway mutations impair bile duct formation, which has substantial variability in its associated clinical features; and (b) Tetralogy of Fallot (TOF), which is the most common form of a complex congenital heart disease, and is associated with several different heritable disorders. Our results demonstrate how an iPSC-based organoid system can be used with genome editing technologies to characterize the pathogenetic effect of human genetic disease-causing mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621886 | PMC |
http://dx.doi.org/10.1172/jci.insight.94954 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!