West Nile virus (WNV) is a neurotropic flavivirus that can cause significant neurological disease. Mouse models of WNV infection demonstrate that a proinflammatory environment is induced within the central nervous system (CNS) after WNV infection, leading to entry of activated peripheral immune cells. We utilized spinal cord slice cultures (SCSC) to demonstrate that anti-inflammatory mechanisms may also play a role in WNV-induced pathology and/or recovery. Microglia are a type of macrophage that function as resident CNS immune cells. Similar to mouse models, infection of SCSC with WNV induces the upregulation of proinflammatory genes and proteins that are associated with microglial activation, including the microglial activation marker Iba1 and CC motif chemokines CCL2, CCL3, and CCL5. This suggests that microglia assume a proinflammatory phenotype in response to WNV infection similar to the proinflammatory (M1) activation that can be displayed by other macrophages. We now show that the WNV-induced expression of these and other proinflammatory genes was significantly decreased in the presence of minocycline, which has antineuroinflammatory properties, including the ability to inhibit proinflammatory microglial responses. Minocycline also caused a significant increase in the expression of anti-inflammatory genes associated with alternative anti-inflammatory (M2) macrophage activation, including interleukin 4 (IL-4), IL-13, and FIZZ1. Minocycline-dependent alterations to M1/M2 gene expression were associated with a significant increase in survival of neurons, microglia, and astrocytes in WNV-infected slices and markedly decreased levels of inducible nitric oxide synthase (iNOS). These results demonstrate that an anti-inflammatory environment induced by minocycline reduces viral cytotoxicity during WNV infection in CNS tissue. West Nile virus (WNV) causes substantial morbidity and mortality, with no specific therapeutic treatments available. Antiviral inflammatory responses are a crucial component of WNV pathology, and understanding how they are regulated is important for tailoring effective treatments. Proinflammatory responses during WNV infection have been extensively studied, but anti-inflammatory responses (and their potential protective and reparative capabilities) following WNV infection have not been investigated. Minocycline induced the expression of genes associated with the anti-inflammatory (M2) activation of CNS macrophages (microglia) in WNV-infected SCSC while inhibiting the expression of genes associated with proinflammatory (M1) macrophage activation and was protective for multiple CNS cell types, indicating its potential use as a therapeutic reagent. This culture system can uniquely address the ability of CNS parenchymal cells (neurons, astrocytes, and microglia) to respond to minocycline and to modulate the inflammatory environment and cytotoxicity in response to WNV infection without peripheral immune cell involvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5660470 | PMC |
http://dx.doi.org/10.1128/JVI.00569-17 | DOI Listing |
: West Nile virus (WNV) is a rapidly growing problem worldwide. The lack of emergency treatment and a safe licensed vaccine against WNV allows the virus to cause sporadic outbreaks of human disease, including fatal cases. Formalin-inactivated vaccines have been used for a long time and have been shown to be very safe and effective, especially in susceptible populations.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Veterinary Medicine, Biomedical and Health Sciences School, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain.
West Nile Virus (WNV) is a zoonotic, vector-borne pathogen affecting humans and animals, particularly in Europe. The virus is primarily transmitted through mosquitoes that infect birds, which serve as the main reservoirs. Humans and horses are incidental hosts.
View Article and Find Full Text PDFPathogens
December 2024
Department of Biology, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia.
The West Nile virus (WNV) has recently become more widespread, posing a threat to both human and animal health. In Western Europe, most outbreaks have been caused by WNV lineage 1, while in Eastern Europe, WNV lineage 2 has led to human and bird mortality. The ability to appropriately manage this threat is dependent on integrated surveillance and early detection.
View Article and Find Full Text PDFPathogens
December 2024
Department of Medicine, School of Health Sciences, University of Patras, 26504 Rio, Greece.
Background: West Nile Virus [WNV] is a mosquito-borne flavivirus. It has spread globally, causing asymptomatic to severe neurological diseases in humans, with an increased risk in older adults and those with underlying conditions. This review examines WNV's impact on pregnancy, focusing on maternal and neonatal symptoms and risks.
View Article and Find Full Text PDFAm J Ther
January 2025
Department of Medicine, Long Island Jewish Forest Hills (Northwell Health), Forest Hills, NY.
Background: West Nile virus (WNV), although underdiagnosed, is the most common mosquito-borne disease and the second most common cause of viral encephalitis in the United States. Fewer than 1% of those infected develop neuroinvasive disease.
Methods: We present a cluster of 3 cases of neuroinvasive WNV that occurred between August and September 2023 and a review of the literature for neurologic involvement with this virus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!